Mechanisms of Microvascular Remodeling Progression

微血管重塑进展机制

基本信息

  • 批准号:
    8470212
  • 负责人:
  • 金额:
    $ 34.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Vascular remodeling is an adaptive mechanism for long-term modification of vascular diameter. In hypertension, inward remodeling, that is, the structural reduction of the lumen diameter in resistance vessels, is associated with an increased risk for myocardial infarction and stroke. However, despite its association with life threatening cardiovascular events, little is known about the mechanisms that initiate and guide the progression of inward remodeling in the resistance microvessels. In this regard, we view the remodeling process as a continuum of events that culminate in the structurally altered vessel. Our singularly novel and provocative hypothesis is that sustained arteriolar vasoconstriction in response to prolonged humoral, and/or mechanical stimuli initiates remodeling mechanisms characterized by: 1) partial degradation (turnover) of the extracellular matrix (ECM) components of the vessel wall; 2) rearrangement of the vascular smooth muscle (VSM) cytoskeleton; and 3) repositioning of the VSM cellular attachments via processes that depend on the cellular production of reactive oxygen species (ROS). Using a highly innovative multiphoton imaging technique developed in our laboratories, we recently demonstrated that VSM cells in isolated arterioles re-lengthen and rapidly change position during prolonged vasoconstriction (a hallmark of hypertension) while the reduced arteriolar diameter is maintained. This phenomenon occurs in as little as four hours, and we propose is an early mechanism associated with inward remodeling. We further hypothesize that other mechanisms occur concurrently, including: 1) ROS-dependent activation of matrix metalloproteinases (MMP) to degrade the ECM; 2) ROS-dependent modulation of the small G protein Rho to induce calcium sensitization and remodel the VSM cytoskeleton; and 3) ROS-dependent modulation of integrin-dependent VSM cell attachments. We will test our hypotheses in three in vivo and two in vitro models using state of the art imaging and molecular approaches. With intravital microscopy we will monitor vascular remodeling in vivo, and with multiphoton microscopy, we will determine VSM cell behavior and ECM changes in isolated arterioles. With atomic force microscopy (AFM) and fluorescence imaging we will apply discrete forces to freshly isolated VSM cells and monitor focal adhesion (cellular attachments) and cytoskeletal remodeling. These methodologies combined with molecular and pharmacological techniques will be used in our Specific Aims to determine the role of ROS, MMPs, Rho, and integrins on remodeling. These approaches will provide a powerful strategy for testing our hypotheses and integrating our results. Our long-term goal is to characterize the mechanisms leading to the structural modification of resistance vessels in hypertension. These fundamentally important mechanistic studies will allow us to develop new strategies to prevent, stop, and/or reverse remodeling and the life threatening events associated with it.
描述(由申请人提供):血管重塑是一种长期改变血管直径的适应性机制。在高血压中,向内重构,即阻力血管中管腔直径的结构性减小,与心肌梗死和中风的风险增加相关。然而,尽管它与危及生命的心血管事件的关联,很少有人知道的机制,启动和指导的阻力微血管向内重塑的进展。在这方面,我们认为重塑过程是一个连续的事件,最终在结构改变的血管。我们的独特的新颖和挑衅性的假设是,持续的小动脉血管收缩响应于长期的体液和/或机械刺激启动重塑机制,其特征在于:1)部分降解2)血管平滑肌(VSM)细胞骨架的重排;和3)通过依赖于活性氧物质(ROS)的细胞产生的过程重新定位VSM细胞附着。使用我们实验室开发的高度创新的多光子成像技术,我们最近证明了孤立小动脉中的VSM细胞在长时间血管收缩(高血压的标志)期间重新延长并迅速改变位置,同时保持小动脉直径减小。这种现象在短短四个小时内就会发生,我们认为这是与向内重塑相关的早期机制。我们进一步假设其他机制同时发生,包括:1)ROS依赖性激活基质金属蛋白酶(MMP)降解ECM; 2)ROS依赖性调节小G蛋白Rho诱导钙致敏和重塑VSM细胞骨架; 3)ROS依赖性调节整合素依赖性VSM细胞附着。我们将使用最先进的成像和分子方法在三个体内和两个体外模型中测试我们的假设。活体显微镜,我们将监测血管重塑在体内,并与多光子显微镜,我们将确定VSM细胞的行为和ECM的变化,在孤立的小动脉。利用原子力显微镜(AFM)和荧光成像,我们将对新鲜分离的VSM细胞施加离散力,并监测粘着斑(细胞附着)和细胞骨架重塑。这些方法结合分子和药理学技术将用于我们的特定目标,以确定ROS,MMP,Rho和整合素对重塑的作用。这些方法将为检验我们的假设和整合我们的结果提供强有力的策略。我们的长期目标是表征导致高血压中阻力血管结构改变的机制。这些至关重要的机制研究将使我们能够开发新的策略来预防,停止和/或逆转重塑以及与之相关的危及生命的事件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luis A Martinez-Lemus其他文献

Luis A Martinez-Lemus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luis A Martinez-Lemus', 18)}}的其他基金

Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
  • 批准号:
    10359775
  • 财政年份:
    2021
  • 资助金额:
    $ 34.36万
  • 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
  • 批准号:
    10207884
  • 财政年份:
    2021
  • 资助金额:
    $ 34.36万
  • 项目类别:
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
  • 批准号:
    10569599
  • 财政年份:
    2021
  • 资助金额:
    $ 34.36万
  • 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
  • 批准号:
    10642932
  • 财政年份:
    2021
  • 资助金额:
    $ 34.36万
  • 项目类别:
Imaging and Information Technology Core
影像与信息技术核心
  • 批准号:
    7918621
  • 财政年份:
    2010
  • 资助金额:
    $ 34.36万
  • 项目类别:
Mechanisms of microvascular remodeling progression
微血管重塑进展机制
  • 批准号:
    7740642
  • 财政年份:
    2009
  • 资助金额:
    $ 34.36万
  • 项目类别:
Mechanisms of microvascular remodeling progression
微血管重塑进展机制
  • 批准号:
    8282837
  • 财政年份:
    2009
  • 资助金额:
    $ 34.36万
  • 项目类别:
Mechanisms of microvascular remodeling progression
微血管重塑进展机制
  • 批准号:
    7894496
  • 财政年份:
    2009
  • 资助金额:
    $ 34.36万
  • 项目类别:
Mechanisms of Microvascular Remodeling Progression
微血管重塑进展机制
  • 批准号:
    9198801
  • 财政年份:
    2009
  • 资助金额:
    $ 34.36万
  • 项目类别:
Mechanisms of Microvascular Remodeling Progression
微血管重塑进展机制
  • 批准号:
    9026447
  • 财政年份:
    2009
  • 资助金额:
    $ 34.36万
  • 项目类别:

相似海外基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
  • 批准号:
    24K18449
  • 财政年份:
    2024
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
  • 批准号:
    24K18450
  • 财政年份:
    2024
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
  • 批准号:
    24K01350
  • 财政年份:
    2024
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
  • 批准号:
    LE240100129
  • 财政年份:
    2024
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X00760X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Research Grant
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
  • 批准号:
    DP230100637
  • 财政年份:
    2023
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Discovery Projects
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
  • 批准号:
    23K04579
  • 财政年份:
    2023
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
  • 批准号:
    22KJ1464
  • 财政年份:
    2023
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
  • 批准号:
    2887441
  • 财政年份:
    2023
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了