Mechanisms of microvascular remodeling progression
微血管重塑进展机制
基本信息
- 批准号:7894496
- 负责人:
- 金额:$ 36.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsArtsAtomic Force MicroscopyBlood VesselsCalciumCaliberCardiovascular systemCell-Matrix JunctionCollagen Type ICytoskeletonDNA Sequence RearrangementEventExtracellular MatrixExtracellular Matrix DegradationFibronectinsFocal AdhesionsGoalsHourHypertensionImageImaging TechniquesImmunohistochemistryIntegrinsLaboratoriesLengthLifeMatrix MetalloproteinasesMeasuresMechanicsMethodologyMicroscopyModelingModificationMolecularMonitorMonomeric GTP-Binding ProteinsMyocardial InfarctionPositioning AttributeProcessProductionReactive Oxygen SpeciesResearchResistanceRiskRoleSmooth Muscle MyocytesStimulusStrokeStructureTechniquesTestingTherapeutic procedureVascular Smooth MuscleVascular remodelingVasoconstrictor AgentsVasodilator Agentsarteriolecell behaviorfluorescence imagingin vitro Modelin vivoin vivo Modelinnovationintravital microscopymolecular imagingnovelnovel strategiespreventprophylacticpublic health relevanceresearch studyresponserhovasoconstriction
项目摘要
DESCRIPTION (provided by applicant): Vascular remodeling is an adaptive mechanism for long-term modification of vascular diameter. In hypertension, inward remodeling, that is, the structural reduction of the lumen diameter in resistance vessels, is associated with an increased risk for myocardial infarction and stroke. However, despite its association with life threatening cardiovascular events, little is known about the mechanisms that initiate and guide the progression of inward remodeling in the resistance microvessels. In this regard, we view the remodeling process as a continuum of events that culminate in the structurally altered vessel. Our singularly novel and provocative hypothesis is that sustained arteriolar vasoconstriction in response to prolonged humoral, and/or mechanical stimuli initiates remodeling mechanisms characterized by: 1) partial degradation (turnover) of the extracellular matrix (ECM) components of the vessel wall; 2) rearrangement of the vascular smooth muscle (VSM) cytoskeleton; and 3) repositioning of the VSM cellular attachments via processes that depend on the cellular production of reactive oxygen species (ROS). Using a highly innovative multiphoton imaging technique developed in our laboratories, we recently demonstrated that VSM cells in isolated arterioles re-lengthen and rapidly change position during prolonged vasoconstriction (a hallmark of hypertension) while the reduced arteriolar diameter is maintained. This phenomenon occurs in as little as four hours, and we propose is an early mechanism associated with inward remodeling. We further hypothesize that other mechanisms occur concurrently, including: 1) ROS-dependent activation of matrix metalloproteinases (MMP) to degrade the ECM; 2) ROS-dependent modulation of the small G protein Rho to induce calcium sensitization and remodel the VSM cytoskeleton; and 3) ROS-dependent modulation of integrin-dependent VSM cell attachments. We will test our hypotheses in three in vivo and two in vitro models using state of the art imaging and molecular approaches. With intravital microscopy we will monitor vascular remodeling in vivo, and with multiphoton microscopy, we will determine VSM cell behavior and ECM changes in isolated arterioles. With atomic force microscopy (AFM) and fluorescence imaging we will apply discrete forces to freshly isolated VSM cells and monitor focal adhesion (cellular attachments) and cytoskeletal remodeling. These methodologies combined with molecular and pharmacological techniques will be used in our Specific Aims to determine the role of ROS, MMPs, Rho, and integrins on remodeling. These approaches will provide a powerful strategy for testing our hypotheses and integrating our results. Our long-term goal is to characterize the mechanisms leading to the structural modification of resistance vessels in hypertension. These fundamentally important mechanistic studies will allow us to develop new strategies to prevent, stop, and/or reverse remodeling and the life threatening events associated with it. PUBLIC HEALTH RELEVANCE: Public Health Relevance Statement In people with high blood pressure, the small blood vessels known as resistance arterioles undergo a process of structural remodeling that reduces their internal diameter and increases the risk for heart attacks and stroke. The goal of this project is to understand the mechanisms that control this remodeling. This understanding will allow us to develop novel strategies for preventing, stopping, and/or reversing the remodeling process and the life threatening events that are associated with it.
描述(由申请人提供):血管重塑是一种长期改变血管直径的适应性机制。在高血压中,向内重构,即阻力血管中管腔直径的结构性减小,与心肌梗死和中风的风险增加相关。然而,尽管它与危及生命的心血管事件的关联,很少有人知道的机制,启动和指导的阻力微血管向内重塑的进展。在这方面,我们将重塑过程视为一个连续的事件,最终导致结构改变的血管。我们的独特的新颖和挑衅性的假设是,持续的小动脉血管收缩响应于长期的体液和/或机械刺激启动重塑机制,其特征在于:1)部分降解2)血管平滑肌(VSM)细胞骨架的重排;和3)通过依赖于活性氧物质(ROS)的细胞产生的过程重新定位VSM细胞附着。使用我们实验室开发的高度创新的多光子成像技术,我们最近证明了孤立小动脉中的VSM细胞在长时间血管收缩(高血压的标志)期间重新延长并迅速改变位置,同时保持小动脉直径减小。这种现象发生在短短四个小时内,我们认为这是一种与内向重塑相关的早期机制。我们进一步假设其他机制同时发生,包括:1)ROS依赖性激活基质金属蛋白酶(MMP)降解ECM; 2)ROS依赖性调节小G蛋白Rho诱导钙致敏和重塑VSM细胞骨架; 3)ROS依赖性调节整合素依赖性VSM细胞附着。我们将使用最先进的成像和分子方法在三个体内和两个体外模型中测试我们的假设。活体显微镜,我们将监测血管重塑在体内,并与多光子显微镜,我们将确定VSM细胞的行为和ECM的变化,在孤立的小动脉。利用原子力显微镜(AFM)和荧光成像,我们将对新鲜分离的VSM细胞施加离散力,并监测粘着斑(细胞附着)和细胞骨架重塑。这些方法结合分子和药理学技术将用于我们的特定目标,以确定ROS,MMP,Rho和整合素对重塑的作用。这些方法将为检验我们的假设和整合我们的结果提供强有力的策略。我们的长期目标是表征导致高血压中阻力血管结构改变的机制。这些至关重要的机制研究将使我们能够开发新的策略来预防、阻止和/或逆转重塑以及与之相关的危及生命的事件。公共卫生相关性:公共卫生相关性声明在高血压患者中,被称为阻力小动脉的小血管经历结构重塑的过程,该过程减小其内径并增加心脏病发作的风险,中风这个项目的目标是了解控制这种重塑的机制。这种理解将使我们能够开发新的策略来预防,停止和/或逆转重塑过程以及与之相关的危及生命的事件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis A Martinez-Lemus其他文献
Luis A Martinez-Lemus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis A Martinez-Lemus', 18)}}的其他基金
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
- 批准号:
10359775 - 财政年份:2021
- 资助金额:
$ 36.54万 - 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
- 批准号:
10207884 - 财政年份:2021
- 资助金额:
$ 36.54万 - 项目类别:
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
- 批准号:
10569599 - 财政年份:2021
- 资助金额:
$ 36.54万 - 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
- 批准号:
10642932 - 财政年份:2021
- 资助金额:
$ 36.54万 - 项目类别:
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
ARTS在邻苯二甲酸(2-乙基己基)酯诱导的小鼠睾丸间质细胞凋亡中的作用及机理研究
- 批准号:
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:
促进肿瘤凋亡的融合蛋白CPP-TRAIL-ARTS C27的制备及机制研究
- 批准号:81372444
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
雄性锹甲的生殖对策抉择ARTs及其进化机制-基于行为与SSRs标记的整合研究
- 批准号:31201745
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ARTS: Broadening capacity for research on gall wasps in North America
ARTS:扩大北美瘿蜂研究能力
- 批准号:
2338008 - 财政年份:2024
- 资助金额:
$ 36.54万 - 项目类别:
Continuing Grant
REU Site: Summer Research Program for Community College and Liberal Arts College Students in Physics and Astronomy
REU 网站:社区学院和文理学院学生物理和天文学夏季研究计划
- 批准号:
2349111 - 财政年份:2024
- 资助金额:
$ 36.54万 - 项目类别:
Continuing Grant
Open Access Block Award 2024 - University of the Arts London
2024 年开放获取区块奖 - 伦敦艺术大学
- 批准号:
EP/Z532216/1 - 财政年份:2024
- 资助金额:
$ 36.54万 - 项目类别:
Research Grant
Games, Heritage, Arts, & Sport: the economic, social, and cultural value of the European videogame ecosystem (GAMEHEARTS)
游戏、遗产、艺术、
- 批准号:
10104584 - 财政年份:2024
- 资助金额:
$ 36.54万 - 项目类别:
EU-Funded
Art and Policy in the Global Contemporary: Examining the Role of the Arts in the Production of Public Policy
全球当代的艺术与政策:审视艺术在公共政策制定中的作用
- 批准号:
EP/Y036972/1 - 财政年份:2024
- 资助金额:
$ 36.54万 - 项目类别:
Research Grant
Enhancing Faculty Well-being at Liberal Arts Colleges: Individual, Contextual, Institutional, and Cultural Factors
提高文理学院教师的福祉:个人、背景、制度和文化因素
- 批准号:
24K06445 - 财政年份:2024
- 资助金额:
$ 36.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Building Partnerships to Recruit Recent STEM Graduates into a Masters of Arts in Teaching Program
建立合作伙伴关系,招募应届 STEM 毕业生加入教学硕士项目
- 批准号:
2345165 - 财政年份:2024
- 资助金额:
$ 36.54万 - 项目类别:
Standard Grant
地理総合における対話型鑑賞法を援用したArts-STEM型教科融合授業モデルの開発
利用综合地理学中的互动欣赏方法开发艺术-STEM型学科融合课堂模型
- 批准号:
24H02463 - 财政年份:2024
- 资助金额:
$ 36.54万 - 项目类别:
Grant-in-Aid for Encouragement of Scientists
Arts4Us - Working Together to Scale up Place-Based Arts Initiatives that Support the Mental Health of Children and Young People
Arts4Us - 共同努力扩大支持儿童和青少年心理健康的地方艺术举措
- 批准号:
AH/Z505493/1 - 财政年份:2024
- 资助金额:
$ 36.54万 - 项目类别:
Research Grant
ARTS: A corevision of the pinhole borers (Coleoptera: Curculionidae: Platypodinae) and symbiotic fungi (Raffaelea spp.) via multi-generational systematics training
艺术:通过多代系统学训练对针孔蛀虫(鞘翅目:象甲科:扁豆亚科)和共生真菌(拉斐菌属)进行共同观察
- 批准号:
2342481 - 财政年份:2024
- 资助金额:
$ 36.54万 - 项目类别:
Continuing Grant