Periods of modular forms and complex multiplication

模形式和复数乘法的周期

基本信息

  • 批准号:
    155499-2001
  • 负责人:
  • 金额:
    $ 3.42万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2005
  • 资助国家:
    加拿大
  • 起止时间:
    2005-01-01 至 2006-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
无摘要- Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Darmon, Henri其他文献

The Derived Hecke Algebra for Dihedral Weight One Forms
二面体权重一式的导出赫克代数
  • DOI:
    10.1307/mmj/20217221
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Darmon, Henri;Harris, Michael;Rotger, Victor;Venkatesh, Akshay
  • 通讯作者:
    Venkatesh, Akshay
Generalised Heegner cycles and the complex Abel–Jacobi map
广义海格纳循环和复杂的阿贝尔雅可比图
  • DOI:
    10.1007/s00209-020-02603-8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Bertolini, Massimo;Darmon, Henri;Lilienfeldt, David;Prasanna, Kartik
  • 通讯作者:
    Prasanna, Kartik

Darmon, Henri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Darmon, Henri', 18)}}的其他基金

Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2022
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2021
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2020
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2018
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Stark-Heegner points and algebraic cycles
Stark-Heegner 点和代数环
  • 批准号:
    155499-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

变形的约化密度矩阵及其全息对偶的研究
  • 批准号:
    12005069
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于Modular积图和最大团的草图形状匹配技术研究
  • 批准号:
    61305091
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Toric periods, modular forms, and number theory
环面周期、模形式和数论
  • 批准号:
    RGPIN-2019-03929
  • 财政年份:
    2022
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Toric periods, modular forms, and number theory
环面周期、模形式和数论
  • 批准号:
    RGPIN-2019-03929
  • 财政年份:
    2021
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Branching laws for Jacobi modular forms: periods and specai L-values
雅可比模形式的分支定律:周期和特定 L 值
  • 批准号:
    20K03569
  • 财政年份:
    2020
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Toric periods, modular forms, and number theory
环面周期、模形式和数论
  • 批准号:
    RGPIN-2019-03929
  • 财政年份:
    2020
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Toric periods, modular forms, and number theory
环面周期、模形式和数论
  • 批准号:
    RGPIN-2019-03929
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
New constructions of modular forms via periods of K3 surfaces
通过 K3 表面周期的模块化形式的新结构
  • 批准号:
    18K13383
  • 财政年份:
    2018
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Periods, congruence and special values of L functions for modular forms
模形式的 L 函数的周期、同余和特殊值
  • 批准号:
    16H03919
  • 财政年份:
    2016
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on p-adic L-functions and p-adic periods for modular forms
模形式的 p 进 L 函数和 p 进周期研究
  • 批准号:
    23740015
  • 财政年份:
    2011
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Periods and congruence of modular forms, and Selmer group
模形式的周期和同余,以及 Selmer 群
  • 批准号:
    21540004
  • 财政年份:
    2009
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Periods of modular forms and complex multiplication
模形式和复数乘法的周期
  • 批准号:
    155499-2001
  • 财政年份:
    2007
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了