Hyperlinear groups, amenability and the ultraproduct von neumann algebra

超线性群、顺应性和超积冯诺依曼代数

基本信息

  • 批准号:
    332263-2006
  • 负责人:
  • 金额:
    $ 1.27万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
  • 财政年份:
    2006
  • 资助国家:
    加拿大
  • 起止时间:
    2006-01-01 至 2007-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有摘要--Aucun Sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mazowita, Matthew其他文献

Mazowita, Matthew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mazowita, Matthew', 18)}}的其他基金

Topological and geometric properties of dual Banach algebras associated to locally compact groups
与局部紧群相关的对偶 Banach 代数的拓扑和几何性质
  • 批准号:
    378998-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topological and geometric properties of dual Banach algebras associated to locally compact groups
与局部紧群相关的对偶 Banach 代数的拓扑和几何性质
  • 批准号:
    378998-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topological and geometric properties of dual Banach algebras associated to locally compact groups
与局部紧群相关的对偶 Banach 代数的拓扑和几何性质
  • 批准号:
    378998-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral

相似海外基金

Amenability of the Automorphism Groups of Shift Spaces
移位空间自同构群的适应性
  • 批准号:
    567723-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2021
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
  • 批准号:
    RGPIN-2017-05476
  • 财政年份:
    2021
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2020
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
  • 批准号:
    RGPIN-2017-05476
  • 财政年份:
    2020
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
  • 批准号:
    RGPIN-2017-05476
  • 财政年份:
    2019
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
  • 批准号:
    RGPIN-2015-04007
  • 财政年份:
    2019
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2019
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
  • 批准号:
    RGPIN-2015-04007
  • 财政年份:
    2018
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
  • 批准号:
    RGPIN-2017-05476
  • 财政年份:
    2018
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了