Applications of algebra and topology to constraint satisfaction problems

代数和拓扑在约束满足问题中的应用

基本信息

  • 批准号:
    238899-2006
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2006
  • 资助国家:
    加拿大
  • 起止时间:
    2006-01-01 至 2007-12-31
  • 项目状态:
    已结题

项目摘要

In a constraint satisfaction problem (CSP), one must assign values to variables that must obey various constraints; typical real world examples include scheduling problems and database queries. In general, determining whether a CSP admits a solution is an algorithmic challenge, but it often happens in practice that the constraints are of a very restricted form, allowing the use of efficient methods to solve the CSP. Our long-term goal is to classify precisely what kinds of restrictions lead to these tractable CSP's. Our approach is based on an unexpected and fruitful connection between CSP's and universal algebra that was uncovered in the late 90's by P. Jeavons. In short, every family of constraints is transformed into a mathematical object whose algebraic properties somehow reflect the difficulty of solving the CSP. Further methods borrowed from the field of algebraic topology are used to analyse these algebraic objects. This algebraic approach has led to some major breakthroughs in the last 5 years in the study of the algorithmic complexity of constraint satisfaction problems.
在约束满足问题(CSP)中,必须为必须服从各种约束的变量赋值;典型的现实世界示例包括调度问题和数据库查询。一般来说,确定CSP是否接受解决方案是一个算法挑战,但在实践中经常发生的情况是,约束的形式非常有限,允许使用有效的方法来求解CSP。我们的长期目标是准确地对导致这些易处理的CSP的限制进行分类。我们的方法是基于CSP和泛代数之间的一种意想不到的和卓有成效的联系,该联系是由P.Jeavons在90年代末发现的。简而言之,每一族约束都被转化为一个数学对象,其代数性质以某种方式反映了求解CSP的难度。进一步借用了代数拓扑学领域的方法来分析这些代数对象。在过去的5年里,这种代数方法在约束满足问题的算法复杂性的研究中取得了一些重大突破。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Larose, Benoît其他文献

Larose, Benoît的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Larose, Benoît', 18)}}的其他基金

Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to graph theory and computational complexity
代数在图论和计算复杂性中的应用
  • 批准号:
    238899-2001
  • 财政年份:
    2005
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

李代数的权表示
  • 批准号:
    10371120
  • 批准年份:
    2003
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Representation Varieties, Representation Homology, and Applications in Algebra, Geometry, and Topology
合作研究:表示簇、表示同调以及在代数、几何和拓扑中的应用
  • 批准号:
    1702323
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Representation Varieties, Representation Homology, and Applications in Algebra, Geometry, and Topology
合作研究:表示簇、表示同调以及在代数、几何和拓扑中的应用
  • 批准号:
    1702372
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Classifications of commutative Banach algebras and Banach modules and its applications
交换Banach代数和Banach模的分类及其应用
  • 批准号:
    22540168
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Knots and surfaces in three- and four-manifolds: Applications of symplectic topology and quantum algebra to low dimensional topology
三流形和四流形中的结和表面:辛拓扑和量子代数在低维拓扑中的应用
  • 批准号:
    0906258
  • 财政年份:
    2009
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Classifications of commutative Banach algebras and Banach modules and its applications
交换Banach代数和Banach模的分类及其应用
  • 批准号:
    19540159
  • 财政年份:
    2007
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Noncommutative Algebra to Low-Dimensional Topology and Geometry
非交换代数在低维拓扑和几何中的应用
  • 批准号:
    0539044
  • 财政年份:
    2005
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了