Levy processes and (quasi-)Monte Carlo methods in finance

金融中的征费流程和(准)蒙特卡罗方法

基本信息

  • 批准号:
    299025-2006
  • 负责人:
  • 金额:
    $ 0.44万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2006
  • 资助国家:
    加拿大
  • 起止时间:
    2006-01-01 至 2007-12-31
  • 项目状态:
    已结题

项目摘要

One of the assumptions in the famous Black-Scholes model used in financial derivative pricing is that the log returns of an asset follow the normal or Gaussian distribution. Although it is widely used in practice, this model has serious drawbacks, such as heavy tail, volatility smile / surface, etc. The stochastic volatility models under the BS framework can improve the results to some extent. A quite different approach is to replace the driving processes for the underlying assets by more realistic ones. Levy processes provide a large variety of distributions to serve such purposes. Empirical studies showed that a special class of Levy process based on the generalized hyperbolic distributions can fit the real financial data much better than the Black-Scholes model. A lot of important work on derivative pricing under the generalized hyperbolic distributions has been done in recent years. However, the use of new distributions results in a lacking of closed formulas and more complex problems that need to be explored. On numerical aspects, efficient numerical methods such as Monte Carlo/quasi-Monte Carlo methods are desperately needed.   There are two main objectives of my  research. The first one is to construct new quasi-random sequences, also known as the low-discrepancy sequences. The second one is to study problems related to financial derivative pricing and risk management under more realistic models and their numerical computation methods.   This research should be of high interest for both academics and industry.
在金融衍生品定价中使用的著名的布莱克-斯科尔斯模型的假设之一是,资产的对数收益服从正态分布或高斯分布。虽然该模型在实际中得到了广泛的应用,但它存在着严重的缺陷,如厚尾、波动率微笑面等。BS框架下的随机波动率模型可以在一定程度上改善结果。另一种完全不同的方法是用更现实的方法来取代基础资产的驱动过程。Levy过程提供了各种各样的分布来服务于这些目的。实证研究表明,基于广义双曲分布的一类特殊Levy过程比Black-Scholes模型更能拟合真实的金融数据。近年来,人们对广义双曲分布下的衍生品定价问题做了大量重要的工作。然而,使用新的分布导致缺乏封闭的公式和更复杂的问题,需要探索。在数值方面,迫切需要有效的数值方法,如Monte Carlo/拟Monte Carlo方法。 我的研究有两个主要目标。第一种方法是构造新的准随机序列,也称为低偏差序列。第二部分是在更现实的模型下研究金融衍生产品的定价和风险管理问题及其数值计算方法。 这项研究应该引起学术界和工业界的高度兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lai, Yongzeng其他文献

Assessment of monthly economic losses in Wuhan under the lockdown against COVID-19
The correlations among COVID-19, the effect of public opinion, and the systemic risks of China's financial industries.
Analysis of the efficiency of Hong Kong REITs market based on Hurst exponent
基于Hurst指数的香港REITs市场效率分析
Analysis and Measurement of Barriers to Green Transformation Behavior of Resource Industries.
分析和测量资源行业绿色转化行为的障碍。
Systemic financial risk early warning of financial market in China using Attention-LSTM model

Lai, Yongzeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lai, Yongzeng', 18)}}的其他基金

Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
  • 批准号:
    RGPIN-2019-05906
  • 财政年份:
    2022
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
  • 批准号:
    RGPIN-2019-05906
  • 财政年份:
    2021
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
  • 批准号:
    RGPIN-2019-05906
  • 财政年份:
    2020
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
  • 批准号:
    RGPIN-2019-05906
  • 财政年份:
    2019
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems on Derivative Pricing and Portfolio Optimization under*More Realistic Asset Price Models
*更现实的资产价格模型下衍生品定价和投资组合优化的一些问题
  • 批准号:
    RGPIN-2014-03574
  • 财政年份:
    2018
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems on Derivative Pricing and Portfolio Optimization under More Realistic Asset Price Models
更现实的资产价格模型下衍生品定价和投资组合优化的一些问题
  • 批准号:
    RGPIN-2014-03574
  • 财政年份:
    2017
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems on Derivative Pricing and Portfolio Optimization underMore Realistic Asset Price Models
更现实的资产价格模型下衍生品定价和投资组合优化的一些问题
  • 批准号:
    RGPIN-2014-03574
  • 财政年份:
    2016
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems on Derivative Pricing and Portfolio Optimization under More Realistic Asset Price Models
更现实的资产价格模型下衍生品定价和投资组合优化的一些问题
  • 批准号:
    RGPIN-2014-03574
  • 财政年份:
    2015
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems on Derivative Pricing and Portfolio Optimization under More Realistic Asset Price Models
更现实的资产价格模型下衍生品定价和投资组合优化的一些问题
  • 批准号:
    RGPIN-2014-03574
  • 财政年份:
    2014
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Levy processes and (quasi-)Monte Carlo methods in finance
金融中的征费流程和(准)蒙特卡罗方法
  • 批准号:
    299025-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Submesoscale Processes Associated with Oceanic Eddies
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    160 万元
  • 项目类别:

相似海外基金

Potential theoretic approach to quasi-stationary phenomena of Markov processes
马尔可夫过程准平稳现象的潜在理论方法
  • 批准号:
    23KJ0236
  • 财政年份:
    2023
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploiting the GEOTRACES toolbox to characterize ocean biogeochemical processes: trace elements, isotopes and new quasi-conservative tracers.
利用 GEOTRACES 工具箱来表征海洋生物地球化学过程:微量元素、同位素和新的准保守示踪剂。
  • 批准号:
    2898327
  • 财政年份:
    2023
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Studentship
Firearm violence prevention through community-engaged vacant property reuse: Application of Busy Streets Theory in Detroit
通过社区参与的空置财产再利用预防枪支暴力:繁忙街道理论在底特律的应用
  • 批准号:
    10398443
  • 财政年份:
    2021
  • 资助金额:
    $ 0.44万
  • 项目类别:
Robust quasi-Hamiltonian Monte Carlo Methods
鲁棒准哈密顿蒙特卡罗方法
  • 批准号:
    20H04149
  • 财政年份:
    2020
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Turbulent Plasma and Astrophysical Shocks in Solar-Terrestrial PhysicsThe project will focuses on key physical processes upstream of the quasi-paralle
日地物理学中的湍流等离子体和天体物理冲击该项目将重点关注准平行流上游的关键物理过程
  • 批准号:
    2270573
  • 财政年份:
    2019
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Studentship
The inverse association between cancer and Alzheimers disease: comparing spurious and causal explanations to illuminate the causes of Alzheimers disease
癌症与阿尔茨海默病之间的负相关:比较虚假解释和因果解释以阐明阿尔茨海默病的原因
  • 批准号:
    10465775
  • 财政年份:
    2018
  • 资助金额:
    $ 0.44万
  • 项目类别:
Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
  • 批准号:
    1662509
  • 财政年份:
    2017
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
  • 批准号:
    1662435
  • 财政年份:
    2017
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
  • 批准号:
    1753770
  • 财政年份:
    2017
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
  • 批准号:
    1662466
  • 财政年份:
    2017
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了