Some Problems on Derivative Pricing and Portfolio Optimization under More Realistic Asset Price Models

更现实的资产价格模型下衍生品定价和投资组合优化的一些问题

基本信息

  • 批准号:
    RGPIN-2014-03574
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Derivative pricing, hedging, portfolio optimization and risk management are important problems in modern finance. The Black-Scholes-Merton's model is well known for option pricing. However, empirical studies using worldwide real financial data show that models based on some special Levy processes, called subordinated Brownian motions or time-changed Brownian motions, are more accurate than the Black Scholes-Merton's model. There are many new and challenging problems, both theoretical and computational, under the more realistic and more complex Levy process models. Efficient numerical methods dealing with these problems under Levy models are in high demand since lack of closed formulas under Levy models. The Monte Carlo (MC)/quasi-Monte Carlo (QMC) simulation methods have become indispensable tools in financial engineering in handling high dimensional situations. This research program will apply advanced mathematical tools, such as stochastic analysis, stochastic optimal control, (stochastic) differential equations, Malliavin calculus, etc., and efficient numerical methods to solve certain problems in portfolio optimization, financial derivative pricing, hedging and risk management under the more realistic Levy process models. The problems I plan to tackle include the following: 1. Derivation of optimal portfolios and efficient frontiers for portfolio optimization problems. 2. Construction of efficient Monte Carlo and quasi-Monte Carlo methods with applications to options pricing, portfolio optimization, etc. 3. Simulation of multi-asset derivatives by efficient Monte Carlo and quasi-Monte Carlo methods. 4. Derivation of formulas for Multi-asset option Greeks and simulation of these Greeks. 5. Pricing and hedging American style options. The above problems are new and important both for academic research and financial industrial applications, and the results can be beneficial to the Canadian financial relevant industries.
衍生品定价、套期保值、投资组合优化和风险管理是现代金融学中的重要问题。Black-Scholes-Merton模型是期权定价的著名模型。然而,利用世界范围内真实的金融数据的实证研究表明,基于某些特殊Levy过程的模型(称为从属布朗运动或时变布朗运动)比Black Scholes-Merton模型更精确。在更现实、更复杂的Levy过程模型下,存在着许多新的、具有挑战性的理论和计算问题。有效的数值方法来处理这些问题的Levy模型下的需求很高,因为缺乏封闭的公式在Levy模型。蒙特卡罗(MC)/准蒙特卡罗(QMC)模拟方法已成为金融工程中处理高维问题不可或缺的工具。该研究计划将应用先进的数学工具,如随机分析,随机最优控制,(随机)微分方程,Malliavin微积分等,和有效的数值方法来解决某些问题的投资组合优化,金融衍生品定价,对冲和风险管理下更现实的Levy过程模型。我计划解决的问题包括以下几个方面:1。证券组合最佳化问题之最佳证券组合与有效边界之推导。2.构造有效的蒙特卡罗和拟蒙特卡罗方法,并将其应用于期权定价、投资组合优化等。多资产衍生工具的有效蒙特卡罗和准蒙特卡罗方法模拟。4.多资产期权希腊人公式的推导和这些希腊人的模拟。5.美式期权的定价与套期保值。上述问题无论在学术研究还是在金融产业应用上都是新的、重要的,其研究成果对加拿大金融相关产业的发展具有一定的借鉴意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lai, Yongzeng其他文献

Assessment of monthly economic losses in Wuhan under the lockdown against COVID-19
The correlations among COVID-19, the effect of public opinion, and the systemic risks of China's financial industries.
Analysis of the efficiency of Hong Kong REITs market based on Hurst exponent
基于Hurst指数的香港REITs市场效率分析
Analysis and Measurement of Barriers to Green Transformation Behavior of Resource Industries.
分析和测量资源行业绿色转化行为的障碍。
Systemic financial risk early warning of financial market in China using Attention-LSTM model

Lai, Yongzeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lai, Yongzeng', 18)}}的其他基金

Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
  • 批准号:
    RGPIN-2019-05906
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
  • 批准号:
    RGPIN-2019-05906
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
  • 批准号:
    RGPIN-2019-05906
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
  • 批准号:
    RGPIN-2019-05906
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems on Derivative Pricing and Portfolio Optimization under*More Realistic Asset Price Models
*更现实的资产价格模型下衍生品定价和投资组合优化的一些问题
  • 批准号:
    RGPIN-2014-03574
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems on Derivative Pricing and Portfolio Optimization under More Realistic Asset Price Models
更现实的资产价格模型下衍生品定价和投资组合优化的一些问题
  • 批准号:
    RGPIN-2014-03574
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems on Derivative Pricing and Portfolio Optimization underMore Realistic Asset Price Models
更现实的资产价格模型下衍生品定价和投资组合优化的一些问题
  • 批准号:
    RGPIN-2014-03574
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems on Derivative Pricing and Portfolio Optimization under More Realistic Asset Price Models
更现实的资产价格模型下衍生品定价和投资组合优化的一些问题
  • 批准号:
    RGPIN-2014-03574
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Levy processes and (quasi-)Monte Carlo methods in finance
金融中的征费流程和(准)蒙特卡罗方法
  • 批准号:
    299025-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Levy processes and (quasi-)Monte Carlo methods in finance
金融中的征费流程和(准)蒙特卡罗方法
  • 批准号:
    299025-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Robust Derivative-Free Algorithms for Complex Optimisation Problems
用于复杂优化问题的鲁棒无导数算法
  • 批准号:
    DE240100006
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Early Career Researcher Award
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
  • 批准号:
    RGPIN-2015-05311
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems on Derivative Pricing and Portfolio Optimization under*More Realistic Asset Price Models
*更现实的资产价格模型下衍生品定价和投资组合优化的一些问题
  • 批准号:
    RGPIN-2014-03574
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
  • 批准号:
    RGPIN-2015-05311
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems on Derivative Pricing and Portfolio Optimization under More Realistic Asset Price Models
更现实的资产价格模型下衍生品定价和投资组合优化的一些问题
  • 批准号:
    RGPIN-2014-03574
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
  • 批准号:
    RGPIN-2015-05311
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Some Problems on Derivative Pricing and Portfolio Optimization underMore Realistic Asset Price Models
更现实的资产价格模型下衍生品定价和投资组合优化的一些问题
  • 批准号:
    RGPIN-2014-03574
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
  • 批准号:
    RGPIN-2015-05311
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
The analysis of effects by derivative loss in the fundamental solution of the high-dimensional wave equation on nonlinear problems
高维波动方程基本解对非线性问题导数损失的影响分析
  • 批准号:
    15K04964
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
  • 批准号:
    RGPIN-2015-05311
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了