Floer homology and low-dimensional topology

Florer同调和低维拓扑

基本信息

  • 批准号:
    250349-2007
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2007
  • 资助国家:
    加拿大
  • 起止时间:
    2007-01-01 至 2008-12-31
  • 项目状态:
    已结题

项目摘要

Mathematical knots, visualised as a simple but knotted closed rope, have been studied by scientists since the end of the XIXth century. One of the early motivations was to use these objects as a way to understand properties of atoms and matter. The ties to natural sciences have grown over the years and nowadays, for example, the study of DNA topology is an active, interdisciplinary area of research.From early days of Knot theory, the classification problem for knots has played a central and motivating role. The basic problem seems quite simple: can one tell if two given knots are topologically equivalent or not. Approaches to this problem have led topologists to study various classes of knots and to try to characterize their numerous invariants. Moreover, generations of mathematicians have constructed increasingly complex knot invariants which aim to capture essential properties of knots such as genus, slice genus, unknotting number and so on.One of the many uses of knots, from a mathematical perspective, is that they are intimately related to objects called 3-manifolds, whose classification has been a central problem in Mathematics for more than 60 years. Indeed examples of the relationship between the two (nonts and 3-manifolds) are provided by constructions like Dehn surgery and cyclic branched covers along knots.  Our research is concerned with invariants of knots and such 3-manifolds, the invariants we are interested in being obtained from elliptic partial differential equations on manifolds. In particular, the study of Floer homology theory in its various flavours has helped to prove various conjectures in the area of low-dimensional topology and the applicant's research proposal outlines various problems which may be approached with these powerful invariants.
数学结,被形象化为一个简单但打结的封闭绳索,自十九世纪末以来一直被科学家研究。早期的动机之一是使用这些物体作为理解原子和物质性质的一种方式。与自然科学的联系多年来一直在增长,如今,例如,DNA拓扑学的研究是一个活跃的跨学科研究领域。从结理论的早期开始,结的分类问题就发挥了核心和激励作用。基本的问题似乎很简单:可以判断两个给定的结是否拓扑等价。解决这个问题的方法导致拓扑学家研究各类结,并试图刻画其众多的不变量。此外,一代又一代的数学家们构造了越来越复杂的纽结不变量,旨在捕捉纽结的本质属性,如亏格,切片亏格,解纽结数等。从数学的角度来看,纽结的许多用途之一是它们与称为3-流形的对象密切相关,其分类一直是数学中的中心问题超过60年。事实上,这两个(nonts和3-流形)之间的关系的例子提供了像Dehn手术和循环分支覆盖沿着knots. Our研究涉及的不变量的结和这样的3-流形,不变量,我们感兴趣的是从椭圆形偏微分方程流形上获得。特别是,Floer同调理论在其各种风味的研究已经帮助证明了在低维拓扑学领域的各种prostitutures,并且申请人的研究建议概述了可以用这些强大的不变量来处理的各种问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Collin, Olivier其他文献

Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel
BioShaDock: a community driven bioinformatics shared Docker-based tools registry.
  • DOI:
    10.12688/f1000research.7536.1
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moreews, Francois;Sallou, Olivier;Collin, Olivier
  • 通讯作者:
    Collin, Olivier
Self-organized podosomes are dynamic mechanosensors.
  • DOI:
    10.1016/j.cub.2008.07.046
  • 发表时间:
    2008-09-09
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Collin, Olivier;Na, Sungsoo;Chowdhury, Farhan;Hong, Michael;Shin, Myung Eun;Wang, Fei;Wang, Ning
  • 通讯作者:
    Wang, Ning
Rapid signal transduction in living cells is a unique feature of mechanotransduction
Cell Migration in Confinement: A Micro-Channel-Based Assay

Collin, Olivier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Collin, Olivier', 18)}}的其他基金

Floer homology and low-dimensional topology
Florer同调和低维拓扑
  • 批准号:
    250349-2007
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Floer homology and low-dimensional topology
Florer同调和低维拓扑
  • 批准号:
    250349-2007
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Floer homology and low-dimensional topology
Florer同调和低维拓扑
  • 批准号:
    250349-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Floer homology and low-dimensional topology
Florer同调和低维拓扑
  • 批准号:
    250349-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Floer homology and low-dimensional topology
Florer同调和低维拓扑
  • 批准号:
    250349-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Floer homology and low-dimensional topology
Florer同调和低维拓扑
  • 批准号:
    250349-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Floer homology for knots and 3-manifolds
结和 3 流形的 Florer 同源性
  • 批准号:
    250349-2002
  • 财政年份:
    2006
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Floer homology for knots and 3-manifolds
结和 3 流形的 Florer 同源性
  • 批准号:
    250349-2002
  • 财政年份:
    2004
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Floer homology for knots and 3-manifolds
结和 3 流形的 Florer 同源性
  • 批准号:
    250349-2002
  • 财政年份:
    2003
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Floer homology for knots and 3-manifolds
结和 3 流形的 Florer 同源性
  • 批准号:
    250349-2002
  • 财政年份:
    2002
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
  • 批准号:
    2237131
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Floer Homology and Immersed Curve Invariants in Low Dimensional Topology
低维拓扑中的Floer同调和浸没曲线不变量
  • 批准号:
    2105501
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Floer Homology and Low-Dimensional Topology
Florer 同调和低维拓扑
  • 批准号:
    2104309
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Floer Homology and Low-Dimensional Topology
Florer 同调和低维拓扑
  • 批准号:
    2005539
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
  • 批准号:
    1949209
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Applications of Gauge Theory and Floer Homology to Low-Dimensional Topology
规范理论和Floer同调在低维拓扑中的应用
  • 批准号:
    1811111
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Heegaard Floer Homology and Low-Dimensional Topology
Heegaard Floer 同调和低维拓扑
  • 批准号:
    1811900
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Low-Dimensional Topology, Floer Homology, and Categorification
低维拓扑、Floer 同调和分类
  • 批准号:
    1806437
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Low-Dimensional Topology, Floer Homology, and Categorification
低维拓扑、Floer 同调和分类
  • 批准号:
    1707795
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
  • 批准号:
    1707857
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了