Set covering polyhedra graphs, and matroids
集合覆盖多面体图和拟阵
基本信息
- 批准号:238811-2006
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My primary area of interest is combinatorial optimization, in particular the integer programming models known as packing and covering. A wide variety of practical questions can be formulated in this setting and include: scheduling problems, assignment problems, and the problem of shipping one or more commodities across a network. Sometimes, owing to the special structure of the problem, the natural linear programming relaxation yields an optimal solution. When this occurs the problem can be solved efficiently. The focus of my research has been to characterize when this phenomenon occurs. Although these models have their roots in real life, this leads to deep questions of a purely mathematical nature.
我的主要兴趣领域是组合优化,特别是被称为包装和覆盖的整数规划模型。各种各样的实际问题可以在这种设置中制定,包括:调度问题,分配问题,以及在网络上运送一个或多个商品的问题。有时,由于问题的特殊结构,自然的线性规划松弛会产生最优解。当这种情况发生时,问题可以有效地解决。我的研究重点是描述这种现象发生的时间。虽然这些模型都植根于真实的生活中,但这导致了纯数学性质的深层问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guenin, Bertrand其他文献
Guenin, Bertrand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guenin, Bertrand', 18)}}的其他基金
Optimization, matroids and graphs
优化、拟阵和图表
- 批准号:
RGPIN-2022-03191 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and structure in graphs and matroids
图和拟阵中的算法和结构
- 批准号:
RGPIN-2015-04061 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and structure in graphs and matroids
图和拟阵中的算法和结构
- 批准号:
RGPIN-2015-04061 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and structure in graphs and matroids
图和拟阵中的算法和结构
- 批准号:
RGPIN-2015-04061 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and structure in graphs and matroids
图和拟阵中的算法和结构
- 批准号:
RGPIN-2015-04061 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and structure in graphs and matroids
图和拟阵中的算法和结构
- 批准号:
RGPIN-2015-04061 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Structural problems and minimax relations in graphs and matroids
图和拟阵中的结构问题和极小极大关系
- 批准号:
238811-2012 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Structural problems and minimax relations in graphs and matroids
图和拟阵中的结构问题和极小极大关系
- 批准号:
238811-2012 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Structural problems and minimax relations in graphs and matroids
图和拟阵中的结构问题和极小极大关系
- 批准号:
238811-2012 - 财政年份:2012
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Set covering polyhedra graphs, and matroids
集合覆盖多面体图和拟阵
- 批准号:
238811-2006 - 财政年份:2010
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Innovative e-motor technologies covering e-axles and e-corners vehicle architectures for high-efficient and sustainable e-mobility
创新的电机技术,涵盖电桥和电角车辆架构,实现高效和可持续的电动汽车
- 批准号:
10061830 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
EU-Funded
Research on trace formulas for covering groups of reductive algebraic groups
还原代数群覆盖群的迹公式研究
- 批准号:
23K12951 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EM-TECH - Innovative e-motor technologies covering e-axles and e-corners vehicle architectures for high-efficient and sustainable e-mobility
EM-TECH - 创新电动马达技术,涵盖电动车轴和电动弯道车辆架构,实现高效和可持续的电动交通
- 批准号:
10064117 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
EU-Funded
Loewner Theory on Universal Covering Map and Hyperbolic Metric
关于通用覆盖图和双曲度量的 Loewner 理论
- 批准号:
23K03150 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Comprehensive and Scalable Self-Care Service Covering Health, Wellbeing, Safety and Independence to Support People Throughout their Ageing Journey
涵盖健康、福祉、安全和独立的全面且可扩展的自我护理服务,为人们的整个老龄化之旅提供支持
- 批准号:
10027373 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative R&D
Combinatorial structures on packing, covering, and configulation on hypergraphs
超图上的打包、覆盖和配置的组合结构
- 批准号:
22K03398 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Approximation algorithms and numerical experiments for covering vertices by long paths
长路径覆盖顶点的近似算法和数值实验
- 批准号:
573063-2022 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
University Undergraduate Student Research Awards
Combinatorial designs with cyclic structures for designs of experiments, combinatorial testing, and codes
用于实验设计、组合测试和代码的循环结构组合设计
- 批准号:
22K13949 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Construction of a therapeutic platform for pulmonary MAC disease through identification of the essential genes covering genetic diversity of clinical MAC strains
通过鉴定覆盖临床MAC菌株遗传多样性的必需基因,构建肺部MAC疾病的治疗平台
- 批准号:
22H03115 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Construction of gas release triggers from fine bubbles stabilized by molecular covering
通过分子覆盖稳定的细小气泡构建气体释放触发器
- 批准号:
22K03915 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)