Biological knowledge discovery using the semantic web framework
使用语义网络框架的生物知识发现
基本信息
- 批准号:327371-2007
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Standard web search engines might find web pages that describe biochemicals, but they have little capability in finding biochemicals with a specific set of properties. The reason for this is that biochemical information on the web is not represented in a machine understandable format, and as such, cannot be queried in a complex manner. If biochemicals were represented using a formal knowledge representation language such as description logics, then we could use computers to reason about the information and infer knowledge that is explicit in our shared conceptualization, i.e. a biochemical ontology.This proposal aims to capture the semantics of biochemical structure such that computer-based inferences about function become possible. The approach involves the design of biochemical ontologies and the development of a reasoning-capable knowledge base. The expected outcomes are that chemical functional groups may be inferred from structure and biochemical compounds may be automatically classified. This semantic framework will provide biochemists with the ability to query at variable levels of granularity of chemical structure (electron, atom, molecule) and function (functional groups, organic compounds).This research has the potential to form a cornerstone of the newly emerging semantic web so as to provide biochemical knowledge in a format that is amenable to computer-based reasoning. We anticipate that our efforts to model spatial and temporal aspects of chemical structure will facilitate the querying of complex data such as that generated from molecular dynamics simulations. In combination with other complimentary efforts, we expect that new semantic links may be formed with our resource, leading to improved data integration and powerful new data mining opportunities over heterogeneous biochemical knowledge.
标准的网络搜索引擎可能会找到描述生物化学物质的网页,但它们几乎没有能力找到具有特定性质的生物化学物质。这样做的原因是,网络上的生化信息不是以机器可以理解的格式表示的,因此不能以复杂的方式进行查询。如果使用描述逻辑等形式化的知识表示语言来表示生物化学,那么我们就可以使用计算机对信息进行推理,并推断出在我们共享的概念化中明确的知识,即生化本体。该建议旨在捕获生化结构的语义,从而使基于计算机的功能推理成为可能。该方法涉及生化本体的设计和具有推理能力的知识库的开发。预期的结果是,可以根据结构推断化学官能团,并且可以自动对生化化合物进行分类。这一语义框架将为生物化学家提供在化学结构(电子、原子、分子)和功能(官能团、有机化合物)的不同粒度进行查询的能力。这项研究有可能成为新出现的语义网的基石,从而以一种易于计算机推理的格式提供生化知识。我们预计,我们为化学结构的空间和时间方面建模的努力将促进对复杂数据的查询,例如从分子动力学模拟产生的数据。再加上其他相辅相成的努力,我们预计可能与我们的资源形成新的语义链接,导致改进的数据集成和比异质生物化学知识更强大的新数据挖掘机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dumontier, Michel其他文献
Evaluating FAIR maturity through a scalable, automated, community-governed framework
- DOI:
10.1038/s41597-019-0184-5 - 发表时间:
2019-09-20 - 期刊:
- 影响因子:9.8
- 作者:
Wilkinson, Mark D.;Dumontier, Michel;Schultes, Erik - 通讯作者:
Schultes, Erik
3In-silico Prediction of Synergistic Anti-Cancer Drug Combinations Using Multi-omics Data
- DOI:
10.1038/s41598-019-45236-6 - 发表时间:
2019-06-20 - 期刊:
- 影响因子:4.6
- 作者:
Celebi, Remzi;Walk, Oliver Bear Don't;Dumontier, Michel - 通讯作者:
Dumontier, Michel
Self-organizing ontology of biochemically relevant small molecules
- DOI:
10.1186/1471-2105-13-3 - 发表时间:
2012-01-06 - 期刊:
- 影响因子:3
- 作者:
Chepelev, Leonid L.;Hastings, Janna;Dumontier, Michel - 通讯作者:
Dumontier, Michel
Identifying aberrant pathways through integrated analysis of knowledge in pharmacogenomics
- DOI:
10.1093/bioinformatics/bts350 - 发表时间:
2012-08-15 - 期刊:
- 影响因子:5.8
- 作者:
Hoehndorf, Robert;Dumontier, Michel;Gkoutos, Georgios V. - 通讯作者:
Gkoutos, Georgios V.
Considerations for the Conduction and Interpretation of FAIRness Evaluations
- DOI:
10.1162/dint_a_00051 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:3.9
- 作者:
Azevedo, Ricardo de Miranda;Dumontier, Michel - 通讯作者:
Dumontier, Michel
Dumontier, Michel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dumontier, Michel', 18)}}的其他基金
"Investigation into the dynamics of toxicity using a novel, first-principles based semantic biochemical reactor."
“使用一种新颖的、基于第一原理的语义生化反应器来研究毒性动力学。”
- 批准号:
327371-2012 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
"Investigation into the dynamics of toxicity using a novel, first-principles based semantic biochemical reactor."
“使用一种新颖的、基于第一原理的语义生化反应器来研究毒性动力学。”
- 批准号:
327371-2012 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Biological knowledge discovery using the semantic web framework
使用语义网络框架的生物知识发现
- 批准号:
327371-2007 - 财政年份:2011
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Biological knowledge discovery using the semantic web framework
使用语义网络框架的生物知识发现
- 批准号:
327371-2007 - 财政年份:2010
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Biological knowledge discovery using the semantic web framework
使用语义网络框架的生物知识发现
- 批准号:
327371-2007 - 财政年份:2009
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Biological knowledge discovery using the semantic web framework
使用语义网络框架的生物知识发现
- 批准号:
327371-2007 - 财政年份:2008
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
- 批准号:
RGPIN-2019-04696 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
BIOLOGICAL TESTING FACILITY - "CONTRACEPTIVE TARGET WEB APPLICATIONS"
生物测试设施 - “避孕目标网络应用程序”
- 批准号:
10361637 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
- 批准号:
10363267 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
- 批准号:
10540708 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
BIOLOGICAL TESTING FACILITY - CONTRACEPTIVE TARGET APPLICATION
生物测试设施 - 避孕目标应用
- 批准号:
10576708 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
BIOLOGICAL TESTING FACILITY - CONTRACEPTIVE TARGET APPLICATION
生物测试设施 - 避孕目标应用
- 批准号:
10788177 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
- 批准号:
RGPIN-2019-04696 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Understanding the molecular mechanisms and biological functions of a novel bleach-sensing bacterial receptor in shaping host-associated bacterial populations in response to host inflammation
了解新型漂白剂感应细菌受体在塑造宿主相关细菌群体以响应宿主炎症方面的分子机制和生物学功能
- 批准号:
10217956 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Understanding the molecular mechanisms and biological functions of a novel bleach-sensing bacterial receptor in shaping host-associated bacterial populations in response to host inflammation
了解新型漂白剂感应细菌受体在塑造宿主相关细菌群体以响应宿主炎症方面的分子机制和生物学功能
- 批准号:
10708196 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
- 批准号:
RGPIN-2019-04696 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual