Advances in the theory and applications of projected dynamical systems and double-layered dynamics
投影动力系统和双层动力学理论与应用进展
基本信息
- 批准号:262899-2006
- 负责人:
- 金额:$ 0.95万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is meant to advance both the theory and the applications of the infinite-dimensional projected dynamical systems (PDS), as well as to advance the theory and applications of multiple time-scale dynamics. PDS were introduced in the mathematical literature in the 70's in the form of differential inclusions (in the context of convex variational analysis and its economic applications) and then evolved to their present form via their treatment as a class of discontinuous differential equations on Hilbert spaces. In general, a PDS describes the time evolution of certain constraint problems from disequilibrium to equilibrium. PDS share an intimate relation to variational inequality problems and constitute a mathematical theory of interdisciplinary interest. They have been used in areas such as engineering, transportation science, operations research, economics, finance and game theory. We propose to advance the theory of PDS by continuing to study the question of existence and stability of periodic cycles and the implications of the new results for applied problems. The first results in this direction have been obtained (and published) by the author of this proposal. The current study in this direction also involves a graduate student. We propose to extend the present theory of PDS, as intervenes in that of double layered dynamics-DLD (by extending PDS to Lp-spaces), and to extend the theory and areas of DLD (see current publications) to networks interaction and internet traffic problems. We started using, for the first time, PDS theory in epidemiology, by modelling vaccination strategies games for groups of populations with distinct infection/ vaccination risk assessments. We plan to further this investigation towards a DLD model for such games. Last but not least, given the CFI High Performance Computing Facility grant the author of this proposal received (as PI), we propose the development of numerical simulations for the applications of PDS/DLD.
这一建议的提出将推动无限维投影动力系统(PDS)的理论和应用,以及多时间尺度动力学的理论和应用。PDS在70年代以微分包含的形式引入数学文献中(在凸变分分析及其经济应用的背景下),然后通过将其作为一类希尔伯特空间上的不连续微分方程处理而发展到目前的形式。一般来说,PDS描述了某些约束问题从不平衡到平衡的时间演化。PDS与变分不等式问题有着密切的联系,并构成了一个具有跨学科兴趣的数学理论。它们已被用于工程、运输科学、运筹学、经济学、金融和博弈论等领域。我们建议通过继续研究周期循环的存在性和稳定性问题以及新结果对应用问题的影响来推进PDS理论。在这个方向上的第一个结果已经获得(和出版)的作者本建议。目前在这个方向的研究也涉及一名研究生。我们建议扩展目前的PDS理论,作为双层动力学DLD的干预(通过扩展PDS到LP空间),并扩展DLD的理论和领域(见当前出版物)网络交互和互联网流量问题。我们首次开始在流行病学中使用PDS理论,通过对具有不同感染/疫苗接种风险评估的人群的疫苗接种策略游戏进行建模。我们计划进一步研究这类游戏的DLD模型。 最后但并非最不重要的是,鉴于CFI高性能计算设施授予本提案的作者(作为PI),我们建议开发PDS/DLD应用程序的数值模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cojocaru, Monica其他文献
Cojocaru, Monica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cojocaru, Monica', 18)}}的其他基金
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
- 批准号:
RGPIN-2017-04530 - 财政年份:2021
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
- 批准号:
RGPIN-2017-04530 - 财政年份:2020
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
- 批准号:
RGPIN-2017-04530 - 财政年份:2019
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
- 批准号:
507940-2017 - 财政年份:2019
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Modelling the spread of infections in a first-world child care facility: coding, analysis and policy implications
对第一世界儿童保育机构中的感染传播进行建模:编码、分析和政策影响
- 批准号:
538719-2019 - 财政年份:2019
- 资助金额:
$ 0.95万 - 项目类别:
Collaborative Research and Development Grants
Advances in the theory and applications of projected dynamical systems and double-layered dynamics
投影动力系统和双层动力学理论与应用进展
- 批准号:
262899-2006 - 财政年份:2010
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Advances in the theory and applications of projected dynamical systems and double-layered dynamics
投影动力系统和双层动力学理论与应用进展
- 批准号:
262899-2006 - 财政年份:2009
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Advances in the theory and applications of projected dynamical systems and double-layered dynamics
投影动力系统和双层动力学理论与应用进展
- 批准号:
262899-2006 - 财政年份:2008
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Projected Differential Equations. New Solution Sets, Applicability to Control Theory and Extension to Banach Spaces
投影微分方程。
- 批准号:
262903-2003 - 财政年份:2006
- 资助金额:
$ 0.95万 - 项目类别:
University Faculty Award
Advances in the theory and applications of projected dynamical systems and double-layered dynamics
投影动力系统和双层动力学理论与应用进展
- 批准号:
262899-2006 - 财政年份:2006
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
高阶微分方程的周期解及多重性
- 批准号:11501240
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
- 批准号:11301334
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advances in behavioral decision analytics: Theory, Applications, and Training
行为决策分析的进展:理论、应用和培训
- 批准号:
2049896 - 财政年份:2021
- 资助金额:
$ 0.95万 - 项目类别:
Continuing Grant
NSF-CBMS Regional Research Conference, Nonstandard Finite Difference Methods: Advances in Theory and Applications
NSF-CBMS 区域研究会议,非标准有限差分方法:理论与应用进展
- 批准号:
1933548 - 财政年份:2020
- 资助金额:
$ 0.95万 - 项目类别:
Standard Grant
Advances in Mean Curvature Flow: Theory and Applications
平均曲率流的进展:理论与应用
- 批准号:
EP/S012907/1 - 财政年份:2019
- 资助金额:
$ 0.95万 - 项目类别:
Research Grant
Theory and applications of Knightian uncertainty: making further advances
奈特不确定性的理论与应用:取得进一步进展
- 批准号:
19K01550 - 财政年份:2019
- 资助金额:
$ 0.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advances in index theory and applications
指数理论与应用进展
- 批准号:
FL170100020 - 财政年份:2018
- 资助金额:
$ 0.95万 - 项目类别:
Australian Laureate Fellowships
Advances in Coupled-Cluster Theory with Molecular Applications
耦合簇理论及其分子应用的进展
- 批准号:
1664325 - 财政年份:2017
- 资助金额:
$ 0.95万 - 项目类别:
Continuing Grant
REU Site: Advances of Machine Learning in Theory & Applications (AMALTHEA)
REU 网站:机器学习理论进展
- 批准号:
1560345 - 财政年份:2016
- 资助金额:
$ 0.95万 - 项目类别:
Standard Grant
CDS&E: Advances in Coupled-Cluster Theory with Molecular Applications
CDS
- 批准号:
1361031 - 财政年份:2014
- 资助金额:
$ 0.95万 - 项目类别:
Standard Grant
Advances in distribution theory with applications to transportation logistics and statiscal genesis
分配理论的进展及其在运输物流和统计生成中的应用
- 批准号:
8666-2009 - 财政年份:2013
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Advances of Machine Learning in Theory and Applications (AMALTHEA)
REU 网站:机器学习理论与应用的进展 (AMALTHEA)
- 批准号:
1263011 - 财政年份:2013
- 资助金额:
$ 0.95万 - 项目类别:
Standard Grant