Analysis of sums of vector fields

矢量场和的分析

基本信息

  • 批准号:
    8562-2011
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2012
  • 资助国家:
    加拿大
  • 起止时间:
    2012-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

The main objective of the proposed reseach program is to investigate the global qualitative properties of degenerate elliptic partial differential operators on Euclidean spaces by looking at concrete operators. These operators are sums of squares of vector fields on Euclidean spaces. While the local hypoellipticity of these operators are well-known, the global analogs have been studied intensely only since the beginning of the new millennium. The focus of this research project includes but is not limited to the following topics. (1) Establish the global hypoellipticity in the Schwartz space and Gelfand-Shilov spaces of the corresponding one-parameter family of elliptic operators. (2) Obtain estimates for the solutions of PDEs governed by the one-parameter family of elliptic operators. (3) Use results in item 2 to derive Sobolev estimates for solutions of PDEs governed by sums of squares. (4) Compute explicitly the spectrum of a sum of squares of vector fields. While explicit formulas for the solutions in item 2 are available for some sums of squares dealt with in this proposal, they are in general not suitable for obtaining the estimates as desired and are certainly not the right tools for computing the spectra of sums of squares. The approach taken in this proposal is to use the Fourier transform with respect to the subspace of degeneracy for a sum of squares in question in order to convert the operator to a one-parameter family of elliptic operators, which can be analyzed in detail using variants and perturbations of simple harmonic oscillators. Very detailed information about these mutations of simple harmonic oscillators can be obtained using Hermite functions, Wigner transforms of Hermite functions and estimates for pseudo-differential operators and/or Weyl transforms. The detailed information on the parametrized elliptic operators can then be transferred back to the sum of squares being studied. This approach is akin to Richard Feynman's sum of histories in quantum mechanics. The histories are the parametrized elliptic operators and they are of import in quantum mechanics and it is envisaged that the objective and the underlying approach will provide new insight into quantum field theory. A long-term project is to extend the results to manifolds.
本研究计划的主要目的是研究简并椭圆型偏微分算子在欧氏空间上的整体定性性质。这些算子是欧几里德空间上向量场的平方和。虽然这些算子的局部亚椭圆性是众所周知的,但直到新千年开始,它们的全局类似物才得到了深入的研究。本研究项目的重点包括但不限于以下主题。(1)建立相应的单参数椭圆算子族在Schwartz空间和Gelfand-Shilov空间中的全局亚椭圆性。(2)得到单参数椭圆算子族控制的偏微分方程解的估计。(3)利用第2项的结果推导出平方和控制偏微分方程解的Sobolev估计。(4)显式计算向量场平方和的谱。虽然第2项解的显式公式可用于本建议中处理的某些平方和,但它们通常不适合获得所需的估计,并且肯定不是计算平方和谱的正确工具。本建议采用的方法是对所讨论的平方和的退化子空间使用傅里叶变换,以便将算子转换为单参数椭圆算子族,可以使用简谐振子的变分和摄动详细分析。利用Hermite函数、Hermite函数的Wigner变换以及伪微分算子和/或Weyl变换的估计,可以得到关于简谐振子突变的非常详细的信息。然后,参数化椭圆算子的详细信息可以转移回正在研究的平方和。这种方法类似于理查德·费曼在量子力学中的历史总和。历史是参数化的椭圆算子,它们在量子力学中是重要的,设想目标和潜在的方法将为量子场论提供新的见解。一个长期的项目是将结果扩展到流形。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wong, ManWah其他文献

Wong, ManWah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wong, ManWah', 18)}}的其他基金

Analysis of sums of vector fields
矢量场和的分析
  • 批准号:
    8562-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of sums of vector fields
矢量场和的分析
  • 批准号:
    8562-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of sums of vector fields
矢量场和的分析
  • 批准号:
    8562-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of sums of vector fields
矢量场和的分析
  • 批准号:
    8562-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Wavelet-based analysis of psuedo-differential operators
基于小波的伪微分算子分析
  • 批准号:
    8562-2001
  • 财政年份:
    2005
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

MacMahon分拆分析在固定维数下的多项式时间算法
  • 批准号:
    11171231
  • 批准年份:
    2011
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spatial restriction of exponential sums to thin sets and beyond
指数和对稀疏集及以上的空间限制
  • 批准号:
    2349828
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Ubiquity of Kloosterman sums in Number Theory and Beyond
克洛斯特曼求和在数论及其他领域中无处不在
  • 批准号:
    DP230100534
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Projects
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
  • 批准号:
    EP/V055755/1
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Research Grant
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振​​荡积分
  • 批准号:
    2200470
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
  • 批准号:
    RGPIN-2020-06032
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
LEAPS-MPS: Elliptic Dedekind Sums, Eisenstein Cocycles, and p-adic L-Functions
LEAPS-MPS:椭圆戴德金和、爱森斯坦余循环和 p 进 L 函数
  • 批准号:
    2212924
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
New techniques for exponential sums over low degree polynomials
低次多项式指数和的新技术
  • 批准号:
    DE220100859
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Early Career Researcher Award
Anatomy and Physiology of Numbers -Statistics of Primes and Aliquot Sums-
数字的解剖学和生理学-素数和等分和的统计-
  • 批准号:
    21K13772
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometrical and arithmetic study of invariants appearing exponential sums of representations
指数和表示的不变量的几何和算术研究
  • 批准号:
    21K13773
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了