Inductive limit structure of automorphisms
自同构的归纳极限结构
基本信息
- 批准号:169928-2006
- 负责人:
- 金额:$ 0.73万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2008
- 资助国家:加拿大
- 起止时间:2008-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I am working on George A. Elliott's inductive limit problem for the Fourier transform automorphism f of the irrational rotation C*-algebra A (which depends on an irrational parameter theta). (If U and V are the canonical generators of A satisfying the unitary Heisenberg commutation relation, then f(U) = V and f(V) = U*.) It proved to be a difficult problem during my many attempts to solve it. However, I was able to solve the AF aspect of the problem (during the tenure of my last NSERC grant). Namely, that the fixed point subalgebra of A under the Fourier transform is an AF algebra when the parameter theta is irrational number belonging to a dense G-delta set (see my enclosed Crelle's Journal paper). Later on, in joint work with Wolfgang Lueck and N. Christopher Phillips, we have been able to obtain this AF result for all irrationals [15] (which partly used my earlier work in [11]). (This AF aspect of the research program was mentioned in my last NSERC research proposal back in 1999, and it is now solve.) (more specifically on C*-subalgebras that are direct sums of two circle algebras and two matrix algebras). This gives good evidence for an affirmative answer to the problem. - There are two other canonical automorphism of A that are not well understood, namely of orders 3 and 6 (which I call the "cubic" and "hexic" transforms). I have recruited one of my very bright undergraduate students (Julian Buck) to join me to undertake to study these. Thanks to NSERC's awarding him two NSERC USRA's, we were able to complete two papers on this direction (see [2] and [14]), one of which has recently been accepted for publication in the Journal of Operator Theory. We hope eventually to address and establish the inductive limit structure of these automorphisms also. The AF problem for these is still open, although it is possible that the methods of Lueck-Phillips-Walters [15] may work to show this.
我正在研究无理旋转C*-代数A的傅里叶变换自同构f的George A.Elliott的归纳极限问题(它依赖于无理参数theta)。(如果U和V是满足酉海森堡对易关系的A的正则生成元,则f(U)=V,f(V)=U*.)在我的多次尝试中,它被证明是一个困难的问题。然而,我能够解决这个问题的AF方面(在我最后一次NSERC拨款的任期内)。也就是说,当参数theta是属于稠密G-Delta集的无理数时,A在傅立叶变换下的不动点子代数是AF代数(参见我所附的Crelle‘s Journal论文)。后来,在与Wolfgang Lueck和N.Christopher Phillips的合作下,我们已经能够得到所有无理数的这个AF结果[15](这部分使用了我在[11]中的早期工作)。(这个研究计划的AF方面在我早在1999年的NSERC研究提案中被提到,现在已经解决了。)(更具体地说,关于由两个圆代数和两个矩阵代数组成的C*-子代数)。这为这个问题的肯定答案提供了很好的证据。-还有另外两个A的正则自同构还没有被很好地理解,即3阶和6阶(我称之为“三次”和“十六进制”变换)。我已经招募了我的一个非常聪明的本科生(朱利安·巴克)和我一起承担研究这些。由于NSERC授予他两个NSERC USRA,我们能够完成关于这一方向的两篇论文(参见[2]和[14]),其中一篇最近已被接受发表在算子理论杂志上。我们希望最终也能解决并建立这些自同构的感应极限结构。尽管Lueck-Phillips-Walters[15]的方法可能会证明这一点,但这些自同构的AF问题仍然悬而未决。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Walters, Samuel其他文献
The structure of crossed products of irrational rotation algebras by finite subgroups of SL2(Z)
- DOI:
10.1515/crelle.2010.015 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:1.5
- 作者:
Echterhoff, Siegfried;Lueck, Wolfgang;Walters, Samuel - 通讯作者:
Walters, Samuel
Epidemiology of pelvic and acetabular fractures across 12-mo at a level-1 trauma centre.
- DOI:
10.5312/wjo.v13.i8.744 - 发表时间:
2022-08-18 - 期刊:
- 影响因子:1.9
- 作者:
Cuthbert, Rory;Walters, Samuel;Ferguson, David;Karam, Edward;Ward, Jonathan;Arshad, Homa;Culpan, Paul;Bates, Peter - 通讯作者:
Bates, Peter
Shoulder dystocia and associated manoeuvres as risk factors for perineal trauma
- DOI:
10.1007/s00192-015-2863-x - 发表时间:
2016-04-01 - 期刊:
- 影响因子:1.8
- 作者:
Gauthaman, Nivedita;Walters, Samuel;Doumouchtsis, Stergios K. - 通讯作者:
Doumouchtsis, Stergios K.
Walters, Samuel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Walters, Samuel', 18)}}的其他基金
Inductive limit structure of automorphisms
自同构的归纳极限结构
- 批准号:
169928-2006 - 财政年份:2010
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Inductive limit structure of automorphisms
自同构的归纳极限结构
- 批准号:
169928-2006 - 财政年份:2009
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Inductive limit structure of automorphisms
自同构的归纳极限结构
- 批准号:
169928-2006 - 财政年份:2007
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Inductive limit structure of automorphisms
自同构的归纳极限结构
- 批准号:
169928-2006 - 财政年份:2006
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Automorphisms of C*-algebras and K-theory
C* 代数和 K 理论的自同构
- 批准号:
169928-1999 - 财政年份:2002
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Automorphisms of C*-algebras and K-theory
C* 代数和 K 理论的自同构
- 批准号:
169928-1999 - 财政年份:2001
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Automorphisms of C*-algebras and K-theory
C* 代数和 K 理论的自同构
- 批准号:
169928-1999 - 财政年份:2000
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Automorphisms of C*-algebras and K-theory
C* 代数和 K 理论的自同构
- 批准号:
169928-1999 - 财政年份:1999
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
The classification of amenable c*-algebras
合理的 c* 代数的分类
- 批准号:
169928-1995 - 财政年份:1998
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
The classification of amenable c*-algebras
合理的 c* 代数的分类
- 批准号:
169928-1995 - 财政年份:1997
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
流体湍流运动的相关数学分析
- 批准号:10971174
- 批准年份:2009
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
A novel peptide assay for hepcidin clinical monitoring
一种用于铁调素临床监测的新型肽测定方法
- 批准号:
10698746 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别:
Multiplex In-Solution Protein Array (MISPA) for high throughput, quantitative, early profiling of pathogen-induced head and neck
多重溶液内蛋白质芯片 (MISPA) 用于对病原体引起的头颈部进行高通量、定量、早期分析
- 批准号:
10713928 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别:
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
- 批准号:
10594266 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别:
Bottom-up and top-down computational modeling approaches to study CMV retinitis
研究 CMV 视网膜炎的自下而上和自上而下的计算模型方法
- 批准号:
10748709 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别:
Early intervention with anti-proliferative therapy close to ART initiation to limit long-term SIV persistence
在 ART 开始时进行早期抗增殖治疗干预,以限制 SIV 的长期持续存在
- 批准号:
10849960 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别:
Strep-CaDI: A fast, accurate, and sensitive point-of-care test for Group A Streptococcus
Strep-CaDI:快速、准确且灵敏的 A 组链球菌现场检测
- 批准号:
10699852 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
- 批准号:
10658204 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别:
Non-invasive molecular imaging tool for rapid, longitudinal assessment of localized metabolic disruptions in animal research and care
非侵入性分子成像工具,用于快速纵向评估动物研究和护理中的局部代谢紊乱
- 批准号:
10602045 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别:
Mapping protein signatures to single allele chromatin topologies at genomic resolution
在基因组分辨率下将蛋白质特征映射到单等位基因染色质拓扑
- 批准号:
10649096 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别:
Hijacking Plasmodium ubiquitin-proteasome system to defeat drug resistance
劫持疟原虫泛素蛋白酶体系统以击败耐药性
- 批准号:
10719157 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别: