Children's understanding and application of the mathematical concepts of inversion and associativity
儿童对反演和结合性数学概念的理解和应用
基本信息
- 批准号:261626-2008
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2009
- 资助国家:加拿大
- 起止时间:2009-01-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The development of arithmetic concepts is an essential aspect of children's arithmetic knowledge. In the area of children's mathematical cognition, much of the emphasis has been on the development of additive concepts rather than on multiplicative concepts and yet multiplicative concepts are more complex and difficult for children to understand. Further, research on how children's conceptual development occurs in conjunction with procedural and factual knowledge of arithmetic is critical to understanding children's mathematical knowledge as a whole. My research program aims to address both of these issues by investigating how both additive and multiplicative versions of the concepts of inversion and associativity develop across time in conjunction with procedural and factual knowledge. The concept of inversion, that pairs of operations are inversely related to each other, appears to be grasped, even before formal schooling when the additive aspect of the concept is assessed on problems such as a + b - b. However, when multiplicative problems such as d x e ÷ e are presented, children appear to have a much weaker understanding of the inversion concept. The concept of associativity, that any pair of numbers can be solved first in problems of the form a + b - c and d x e ÷ f, appears to be weak on both additive and multiplicative problem types. There is some evidence that understanding of one concept is related to understanding of the other. Further, there is some evidence that the understanding and application of the concepts is related to factual and procedural knowledge of the operations under investigation. The goal of this research program is to follow children's developing understanding of both concepts and to isolate and identify how concept development can be enhanced or promoted. Children's solid understanding of how the arithmetic operations relate to one another is key to their further and more complex understanding of the mathematic problems and concepts that they will be exposed to in their later years of formal schooling.
算术概念的发展是儿童算术知识发展的一个重要方面。在儿童的数学认知领域,重点一直放在加法概念的发展上,而不是乘法概念,但乘法概念更复杂,更难以为儿童所理解。此外,研究儿童的概念发展如何与算术的程序性和事实性知识结合起来,对于理解儿童的数学知识是至关重要的。我的研究计划旨在通过调查反转和关联性概念的加法和乘法版本如何随着时间的推移与程序和事实知识一起发展来解决这两个问题。反演的概念,即成对的操作是相互反向相关的,似乎是掌握,甚至在正规学校教育之前,当概念的加法方面是评估的问题,如a + B - B。然而,当出现乘法问题,如d x e,儿童似乎对反演概念的理解要弱得多。结合性的概念,即任何一对数都可以在a + B - c和d x e ∈ f的形式的问题中首先得到解决,在加法和乘法问题类型上似乎都很弱。有证据表明,对一个概念的理解与对另一个概念的理解有关。此外,有一些证据表明,对这些概念的理解和应用与对调查中的行动的事实和程序知识有关。本研究计划的目标是跟踪儿童对这两个概念的理解发展,并分离和确定如何增强或促进概念发展。孩子们对算术运算如何相互关联的扎实理解是他们在以后的正规学校教育中对数学问题和概念的进一步和更复杂理解的关键。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robinson, Katherine其他文献
The metabolic syndrome in critically ill patients
- DOI:
10.1016/j.beem.2011.04.008 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:7.4
- 作者:
Robinson, Katherine;Kruger, Peter;Venkatesh, Bala - 通讯作者:
Venkatesh, Bala
"Charismatic Species and Beyond: How Cultural Schemas and Organisational Routines shape Conservation"
- DOI:
10.4103/cs.cs_16_63 - 发表时间:
2017-07-01 - 期刊:
- 影响因子:1.6
- 作者:
Krause, Monika;Robinson, Katherine - 通讯作者:
Robinson, Katherine
'Woe Betides Anybody Who Tries to Turn me Down.' A Qualitative Analysis of Neuropsychiatric Symptoms Following Subthalamic Deep Brain Stimulation for Parkinson's Disease
- DOI:
10.1007/s12152-019-09410-x - 发表时间:
2021-10-01 - 期刊:
- 影响因子:1.4
- 作者:
Mosley, Philip E.;Robinson, Katherine;Carter, Adrian - 通讯作者:
Carter, Adrian
Subthalamic deep brain stimulation identifies frontal networks supporting initiation, inhibition and strategy use in Parkinson's disease
- DOI:
10.1016/j.neuroimage.2020.117352 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:5.7
- 作者:
Mosley, Philip E.;Robinson, Katherine;Perry, Alistair - 通讯作者:
Perry, Alistair
A Pilot Trial of Cognitive Behavioral Therapy for Caregivers After Deep Brain Stimulation for Parkinson's Disease
- DOI:
10.1177/0891988720924720 - 发表时间:
2020-05-13 - 期刊:
- 影响因子:2.6
- 作者:
Mosley, Philip E.;Robinson, Katherine;Pye, Deidre - 通讯作者:
Pye, Deidre
Robinson, Katherine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robinson, Katherine', 18)}}的其他基金
Math Now for Success Later: An Investigation of the Understanding of Basic Arithmetic as a Foundation for Later Mathematics and STEM success
现在的数学是为了以后的成功:对基本算术的理解作为以后数学和 STEM 成功的基础的调查
- 批准号:
DDG-2021-00005 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Development Grant
Math Now for Success Later: An Investigation of the Understanding of Basic Arithmetic as a Foundation for Later Mathematics and STEM success
现在的数学是为了以后的成功:对基本算术的理解作为以后数学和 STEM 成功的基础的调查
- 批准号:
DDG-2021-00005 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Development Grant
The fate of the Kaskawulsh Glacier, Yukon: Improvements on current models of glacial mass-balance
育空地区 Kaskawulsh 冰川的命运:当前冰川质量平衡模型的改进
- 批准号:
565713-2021 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Choosing a High-Resolution Configuration of the WRF Model for Future Simulations of Climate Change O
选择 WRF 模型的高分辨率配置用于未来的气候变化模拟
- 批准号:
549849-2020 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
University Undergraduate Student Research Awards
Children's Understanding of Arithmetic Concepts: Development, Cognitive Factors, and Links to Algebra
儿童对算术概念的理解:发展、认知因素以及与代数的联系
- 批准号:
DDG-2018-00034 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Development Grant
Children's Understanding of Arithmetic Concepts: Development, Cognitive Factors, and Links to Algebra
儿童对算术概念的理解:发展、认知因素以及与代数的联系
- 批准号:
DDG-2018-00034 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Development Grant
Children's understanding and application of the mathematical concepts of inversion and associativity
儿童对反演和结合性数学概念的理解和应用
- 批准号:
261626-2008 - 财政年份:2008
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
The role of division: The development of strategic and conceptual understanding
部门的作用:战略和概念理解的发展
- 批准号:
261626-2003 - 财政年份:2007
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
The role of division: The development of strategic and conceptual understanding
部门的作用:战略和概念理解的发展
- 批准号:
261626-2003 - 财政年份:2006
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
The role of division: The development of strategic and conceptual understanding
部门的作用:战略和概念理解的发展
- 批准号:
261626-2003 - 财政年份:2005
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
- 批准号:
2227366 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Understanding the photochemical and redox behavior induced by ligand field inversion in copper(III) complexes and its application to reactivity.
了解铜 (III) 配合物中配体场反转引起的光化学和氧化还原行为及其在反应性中的应用。
- 批准号:
23K19272 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Towards understanding transition mechanism and application to heat transfer enhancement of elasto-inertia turbulence at low Reynolds number based on vortex modulation
基于涡旋调制的低雷诺数弹惯性湍流传热强化的理解和应用
- 批准号:
23K19093 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Understanding Eating Well in Contemporary Japan using Capability Approach and its Application to Food Education
使用能力方法了解当代日本的健康饮食及其在食品教育中的应用
- 批准号:
22KJ1515 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Understanding and application of wide temperature range lubrication mechanism by tribochemical reaction of silver molybdate
钼酸银摩擦化学反应宽温域润滑机理的理解与应用
- 批准号:
23K03642 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Broadening Participation in STEM Graduate Degrees and the U.S. STEM Workforce: Understanding Application, Admissions, And Matriculation in STEM Graduate Education
扩大对 STEM 研究生学位和美国 STEM 劳动力的参与:了解 STEM 研究生教育的申请、入学和入学
- 批准号:
2336484 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Establishment of a foundation for understanding the phenomenon of autophagy and the clinical application of autophagy inhibitors.
为理解自噬现象和自噬抑制剂的临床应用奠定基础。
- 批准号:
23KJ1811 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Establishing precise genome editing in zebrafish and its application to advance understanding of the Wnt/PCP signalling pathway
在斑马鱼中建立精确的基因组编辑及其应用以促进对 Wnt/PCP 信号通路的理解
- 批准号:
BB/X008401/1 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Research Grant
Understanding genomic stability betweengenerations by assessing mutational burdens in single sperms
通过评估单个精子的突变负担来了解代际基因组稳定性
- 批准号:
10740598 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Understanding FCC-HCP transformation in fatigue-resistant high-entropy alloys and application to medical devices
了解抗疲劳高熵合金的 FCC-HCP 转变及其在医疗器械中的应用
- 批准号:
23H01719 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)