Computational geometry for polygonal reconfiguration, pattern analysis and recognition and music information retrieval
用于多边形重构、模式分析和识别以及音乐信息检索的计算几何
基本信息
- 批准号:9293-2009
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2010
- 资助国家:加拿大
- 起止时间:2010-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research aims to develop efficient algorithms for solving geometric problems that arise in the following areas. (1) The exploration of algorithms for the reconfiguration of different types of linkages in 2 and 3 dimensional space, under various restrictions on the types of motions allowed. Another goal is to explore under what conditions linkages are "stuck" in the sense that they cannot be reconfigured to a flat convex configuration. These results are relevant, not only to robotics, but to protein folding in molecular biology. (2) One of the most promising approaches to pattern recognition is the nearest-neighbor decision rule (also referred to as instance-based learning). It is proposed to improve the space and time efficiency of state-of-the-art nearest neighbor rule algorithms, by incorporating proximity graphs. A second objective is to develop new measures of string similarity and polygonal chain similarity for pattern recognition problems. (3) It is proposed to explore the application of computational geometric tools to problems that arise in music information retrieval and music theory. These problems range from measuring the similarity of rhythms and melodies, to performing cluster and phylogenetic analyses of families of rhythms, with the goal of obtaining a deeper understanding of both, music theory and practical applications to music information retrieval. (4) Traditionally the scientific analysis of textiles has been carried out on several physical structural levels of the fabrics. However, a scientific analysis of the geometric structure of the patterns that appear on the textiles has been largely ignored. We propose a new approach to the scientific study of textiles that breaks with this tradition: the phylogenetic analysis of geometric patterns that decorate the textiles. At the heart of our approach is the design of a measure of dissimilarity between two textile patterns, that mimics the way in which biologists measure the dissimilarity between two DNA molecular sequences, i.e., the minimum number of mutations (simple local and global transformations) required to transform one textile pattern into the other. This research will have an impact of image-based search on the internet, as well as textile retrieval systems for use in museums and libraries.
拟议的研究旨在开发有效的算法来解决以下领域出现的几何问题。(1)在允许的运动类型的各种限制下,探索二维和三维空间中不同类型连杆机构的重新配置算法。另一个目标是探索在什么条件下的联系是“卡住”的意义上,他们不能重新配置为一个平面凸配置。这些结果不仅与机器人学有关,而且与分子生物学中的蛋白质折叠有关。(2)最有前途的模式识别方法之一是最近邻决策规则(也称为基于实例的学习)。它提出了提高空间和时间效率的国家的最先进的近邻规则算法,通过将邻近图。第二个目标是开发新的措施,字符串相似性和多边形链相似性的模式识别问题。(3)建议探讨计算几何工具的应用,出现在音乐信息检索和音乐理论的问题。这些问题的范围从测量的节奏和旋律的相似性,进行聚类和系统发育分析的节奏的家庭,以获得更深入的了解,音乐理论和音乐信息检索的实际应用的目标。(4)传统上,纺织品的科学分析是在织物的几个物理结构层面上进行的。然而,对出现在纺织品上的图案的几何结构的科学分析在很大程度上被忽视了。我们提出了一种新的方法来科学研究的纺织品,打破了这一传统:系统发育分析的几何图案装饰的纺织品。我们方法的核心是设计两种纺织品图案之间的相异性的测量方法,该方法模仿生物学家测量两种DNA分子序列之间的相异性的方式,即,将一种纺织图案转换成另一种所需的最小数量的突变(简单的局部和全局变换)。这项研究将对互联网上基于图像的搜索以及博物馆和图书馆使用的纺织品检索系统产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Toussaint, Godfried其他文献
Unravelling Roman mosaic meander patterns: a simple algorithm for their generation
- DOI:
10.1080/17513470903311644 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:0.2
- 作者:
Liu, Yang;Toussaint, Godfried - 通讯作者:
Toussaint, Godfried
Toussaint, Godfried的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Toussaint, Godfried', 18)}}的其他基金
Computational geometry for polygonal reconfiguration, pattern analysis and recognition and music information retrieval
用于多边形重构、模式分析和识别以及音乐信息检索的计算几何
- 批准号:
9293-2009 - 财政年份:2009
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry for polygonal reconfiguration, pattern recognition, facility location, and polyhedral models
多边形重构、模式识别、设施定位和多面体模型的计算几何
- 批准号:
9293-2005 - 财政年份:2008
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry for polygonal reconfiguration, pattern recognition, facility location, and polyhedral models
多边形重构、模式识别、设施定位和多面体模型的计算几何
- 批准号:
9293-2005 - 财政年份:2007
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry for polygonal reconfiguration, pattern recognition, facility location, and polyhedral models
多边形重构、模式识别、设施定位和多面体模型的计算几何
- 批准号:
9293-2005 - 财政年份:2006
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry for polygonal reconfiguration, pattern recognition, facility location, and polyhedral models
多边形重构、模式识别、设施定位和多面体模型的计算几何
- 批准号:
9293-2005 - 财政年份:2005
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry for visualization, robotics, knot theory, polymer physics and molecular biology
可视化计算几何、机器人技术、结理论、聚合物物理和分子生物学
- 批准号:
9293-2001 - 财政年份:2004
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry for visualization, robotics, knot theory, polymer physics and molecular biology
可视化计算几何、机器人技术、结理论、聚合物物理和分子生物学
- 批准号:
9293-2001 - 财政年份:2003
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry for visualization, robotics, knot theory, polymer physics and molecular biology
可视化计算几何、机器人技术、结理论、聚合物物理和分子生物学
- 批准号:
9293-2001 - 财政年份:2002
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry for visualization, robotics, knot theory, polymer physics and molecular biology
可视化计算几何、机器人技术、结理论、聚合物物理和分子生物学
- 批准号:
9293-2001 - 财政年份:2001
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry for computer aided design, manufacture and visualization
用于计算机辅助设计、制造和可视化的计算几何
- 批准号:
9293-1996 - 财政年份:2000
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Research Grant
Computational Tropical Geometry and its Applications
计算热带几何及其应用
- 批准号:
MR/Y003888/1 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Fellowship
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Fellowship Award
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Continuing Grant