Enabling robotic autonomy in challenging environments; an algorithmic approach
在充满挑战的环境中实现机器人自主;
基本信息
- 批准号:356377-2008
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2011
- 资助国家:加拿大
- 起止时间:2011-01-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My work is centred on deriving algorithmic solutions that enhance an agent's autonomy through intelligent decision-making, collaboration and information exchange with the other members of the computational group. The agents may be nodes in a sensor network, mobile robots, or robotic spacecraft. Autonomy capabilities are especially important when robots operate in challenging environments such as underwater or in space. In particular both planetary exploration and underwater robotics suffer from the same limitations as communication with a human operator is intermittent and with low bandwidth. In order to facilitate autonomy any robotic system must address the following fundamental problems: estimate their state with respect to the surrounding environment; model the world around them; and plan their tasks in an optimal manner. In the proposed research I am planning to extend my work on state estimation for robots moving in three dimensions, using a variety of techniques such as Particle filters and Extended Kalman Filters. I am also planning to develop new techniques for environment modelling using irregular triangular meshes. The previous two components are usually termed together as Simultaneous Localization and Mapping (SLAM) in the robotics community. Moreover, it has been demonstrated in my earlier work, as well as, by other researchers that collaboration between intelligent agents greatly enhances their capabilities. Therefore in my future plans is the extension of single robot planetary exploration algorithms to multiple robots.
我的工作集中在推导算法的解决方案,通过智能决策,协作和信息交流与计算组的其他成员,提高代理的自主性。代理可以是传感器网络中的节点、移动的机器人或机器人航天器。当机器人在水下或太空等具有挑战性的环境中工作时,自主能力尤为重要。特别是行星探索和水下机器人都受到同样的限制,因为与人类操作员的通信是间歇性的,带宽很低。为了促进自主性,任何机器人系统都必须解决以下基本问题:估计它们相对于周围环境的状态;对它们周围的世界进行建模;以及以最佳方式规划它们的任务。在拟议的研究中,我计划扩展我的工作状态估计机器人在三维移动,使用各种技术,如粒子滤波器和扩展卡尔曼滤波器。我还计划开发使用不规则三角形网格进行环境建模的新技术。前两个组件通常被称为机器人社区中的同步定位和映射(SLAM)。此外,在我早期的工作中已经证明,以及其他研究人员,智能代理之间的合作大大提高了他们的能力。 因此,我未来的计划是将单机器人行星探索算法扩展到多机器人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rekleitis, Ioannis其他文献
Multirobot online construction of communication maps
多机器人在线构建通讯地图
- DOI:
10.1109/icra.2017.7989300 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Banfi, Jacopo;Li, Alberto Quattrini;Basilico, Nicola;Rekleitis, Ioannis;Amigoni, Francesco - 通讯作者:
Amigoni, Francesco
AquaVis: A Perception-Aware Autonomous Navigation Framework for Underwater Vehicles
AquaVis:水下航行器的感知感知自主导航框架
- DOI:
10.1109/iros51168.2021.9636124 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Xanthidis, Marios;Kalaitzakis, Michail;Karapetyan, Nare;Johnson, James;Vitzilaios, Nikolaos;O'Kane, Jason M.;Rekleitis, Ioannis - 通讯作者:
Rekleitis, Ioannis
Simultaneous planning, localization, and mapping in a camera sensor network
- DOI:
10.1016/j.robot.2006.05.009 - 发表时间:
2006-11-30 - 期刊:
- 影响因子:4.3
- 作者:
Rekleitis, Ioannis;Meger, David;Dudek, Gregory - 通讯作者:
Dudek, Gregory
A Modular Sensor Suite for Underwater Reconstruction
用于水下重建的模块化传感器套件
- DOI:
10.1109/oceans.2018.8604819 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Rahman, Sharmin;Karapetyan, Nare;Li, Alberto Quattrini;Rekleitis, Ioannis - 通讯作者:
Rekleitis, Ioannis
Hybrid Visual Inertial Odometry for Robust Underwater Estimation
用于稳健水下估计的混合视觉惯性里程计
- DOI:
10.23919/oceans52994.2023.10336994 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Joshi, Bharat;Bandara, Chanaka;Poulakakis, Ioannis;Tanner, Herbert G.;Rekleitis, Ioannis - 通讯作者:
Rekleitis, Ioannis
Rekleitis, Ioannis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rekleitis, Ioannis', 18)}}的其他基金
Autonomous Exploration of Challenging Environments
挑战环境的自主探索
- 批准号:
356377-2013 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Exploration of Challenging Environments
挑战环境的自主探索
- 批准号:
356377-2013 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Exploration of Challenging Environments
挑战环境的自主探索
- 批准号:
356377-2013 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Exploration of Challenging Environments
挑战环境的自主探索
- 批准号:
356377-2013 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Exploration of Challenging Environments
挑战环境的自主探索
- 批准号:
356377-2013 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Enabling robotic autonomy in challenging environments; an algorithmic approach
在充满挑战的环境中实现机器人自主;
- 批准号:
356377-2008 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Enabling robotic autonomy in challenging environments; an algorithmic approach
在充满挑战的环境中实现机器人自主;
- 批准号:
356377-2008 - 财政年份:2010
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Enabling robotic autonomy in challenging environments; an algorithmic approach
在充满挑战的环境中实现机器人自主;
- 批准号:
356377-2008 - 财政年份:2009
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Enabling robotic autonomy in challenging environments; an algorithmic approach
在充满挑战的环境中实现机器人自主;
- 批准号:
356377-2008 - 财政年份:2008
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Centre for Robotic Autonomy in Demanding and Long-lasting Environments (CRADLE)
高要求和持久环境下的机器人自主中心 (CRADLE)
- 批准号:
EP/X02489X/1 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Research Grant
Towards A Reliable Optimization-based Design Framework for Autonomy and Control of Robotic Systems
面向机器人系统自主和控制的可靠的基于优化的设计框架
- 批准号:
DGECR-2022-00106 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Launch Supplement
Improving Robotic Teleoperation through Human-Robot Interaction and Robotic Autonomy
通过人机交互和机器人自主改进机器人远程操作
- 批准号:
2763727 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Studentship
CAREER: Advancing Autonomy for Soft Tissue Robotic Surgery and Interventions
职业:推进软组织机器人手术和干预的自主性
- 批准号:
2144348 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Towards A Reliable Optimization-based Design Framework for Autonomy and Control of Robotic Systems
面向机器人系统自主和控制的可靠的基于优化的设计框架
- 批准号:
RGPIN-2022-04940 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Development of an AI-based Drone Autonomy Platform & Applications for ING Robotic
开发基于人工智能的无人机自主平台
- 批准号:
557339-2020 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Applied Research and Development Grants - Level 2
Development of an AI-based Drone Autonomy Platform & Applications for ING Robotic
开发基于人工智能的无人机自主平台
- 批准号:
557339-2020 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Applied Research and Development Grants - Level 2
Optimization-based Design Framework for Autonomy and Control of Robotic Vehicle Systems
基于优化的机器人车辆系统自主和控制设计框架
- 批准号:
546057-2020 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Postdoctoral Fellowships
Development of an AI-based Drone Autonomy Platform & Applications for ING Robotic
开发基于人工智能的无人机自主平台
- 批准号:
557339-2020 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Applied Research and Development Grants - Level 2
Robot In-hand Dexterous manipulation by extracting data from human manipulation of objects to improve robotic autonomy and dexterity - InDex
机器人手动灵巧操纵,通过从人类操纵物体中提取数据来提高机器人的自主性和灵活性 - InDex
- 批准号:
EP/S032355/1 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Research Grant