LIDAR Automatic Feature Detection and Object Classification
LIDAR 自动特征检测和物体分类
基本信息
- 批准号:411254-2010
- 负责人:
- 金额:$ 1.17万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2012
- 资助国家:加拿大
- 起止时间:2012-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
LiDAR (LIght Detection And Ranging) is a relatively new technology for scanning the earth's surface quickly and accurately. The resulting geometry models can be applied to crucial applications in many fields, including urban planning, management, and visualization; security; updating and maintaining cadastral (property line) data; landscape change detection; virtual reality; and operations mission planning. In most relevant applications, the delineation and identification of geospatial features (herein referred to simply as features), or objects such as buildings, vegetation, roadways and waterways, are of primary interest. Since traditional manual extraction methods are costly and time consuming, and large quantities of LiDAR data are being gathered from different sources, there is a growing demand for automatic LiDAR feature extraction [Cary 2009]. However, it must be noted that the scale of LiDAR datasets (potentially billions of points) found in industrial settings introduces formidable performance challenges, beyond the scope of even the most elegant published research techniques.
激光雷达(光探测和测距)是一种相对较新的技术,可以快速准确地扫描地球表面。生成的几何模型可应用于许多领域的关键应用,包括城市规划、管理和可视化;安全;更新和维护地籍(财产线)数据;景观变化检测;虚拟现实;以及行动任务规划。在大多数相关应用中,地理空间特征(这里简称为特征)或诸如建筑物、植被、道路和水道等对象的描绘和识别是主要感兴趣的。由于传统的手工提取方法昂贵且耗时,而且大量的激光雷达数据是从不同的来源收集的,因此对自动的激光雷达特征提取的需求越来越大[Cary 2009]。然而,必须指出的是,在工业环境中发现的LiDAR数据集(可能是数十亿个点)的规模带来了巨大的性能挑战,甚至超出了最优雅的已发表研究技术的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang, Hao其他文献
Ultrathin Zincophilic Interphase Regulated Electric Double Layer Enabling Highly Stable Aqueous Zinc-Ion Batteries.
- DOI:
10.1007/s40820-023-01312-1 - 发表时间:
2024-01-25 - 期刊:
- 影响因子:26.6
- 作者:
Chen, Yimei;Deng, Zhiping;Sun, Yongxiang;Li, Yue;Zhang, Hao;Li, Ge;Zeng, Hongbo;Wang, Xiaolei - 通讯作者:
Wang, Xiaolei
Single-Fourier transform based full-bandwidth Fresnel diffraction
基于单傅里叶变换的全带宽菲涅耳衍射
- DOI:
10.1088/2040-8986/abdf68 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:2.1
- 作者:
Zhang, Wenhui;Zhang, Hao;Jin, Guofan - 通讯作者:
Jin, Guofan
Efficient expansion of rare human circulating hematopoietic stem/progenitor cells in steady-state blood using a polypeptide-forming 3D culture.
使用形成多肽的 3D 培养物有效扩增稳态血液中稀有的人类循环造血干/祖细胞
- DOI:
10.1007/s13238-021-00900-4 - 发表时间:
2022-11 - 期刊:
- 影响因子:21.1
- 作者:
Xu, Yulin;Zeng, Xiangjun;Zhang, Mingming;Wang, Binsheng;Guo, Xin;Shan, Wei;Cai, Shuyang;Luo, Qian;Li, Honghu;Li, Xia;Li, Xue;Zhang, Hao;Wang, Limengmeng;Lin, Yu;Liu, Lizhen;Li, Yanwei;Zhang, Meng;Yu, Xiaohong;Qian, Pengxu;Huang, He - 通讯作者:
Huang, He
Association between intraoperative intravenous lidocaine infusion and survival in patients undergoing pancreatectomy for pancreatic cancer: a retrospective study
术中静脉注射利多卡因与因胰腺癌接受胰腺切除术的患者生存之间的关系:一项回顾性研究
- DOI:
10.1016/j.bja.2020.03.034 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:9.8
- 作者:
Zhang, Hao;Yang, Li;Miao, Changhong - 通讯作者:
Miao, Changhong
Spatial diversity processing mechanism based on the distributed underwater acoustic communication system.
- DOI:
10.1371/journal.pone.0296117 - 发表时间:
2024 - 期刊:
- 影响因子:3.7
- 作者:
Zhou, Manli;Zhang, Hao;Lv, Tingting;Gao, Yong;Duan, Yingying - 通讯作者:
Duan, Yingying
Zhang, Hao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhang, Hao', 18)}}的其他基金
Understanding Hydrogen Embrittlement in Steels from Atomistic Perspective
从原子角度理解钢中的氢脆
- 批准号:
RGPIN-2022-03661 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Learning Generative Models of 3D Shapes and Environments
学习 3D 形状和环境的生成模型
- 批准号:
RGPIN-2019-07098 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Learning Generative Models of 3D Shapes and Environments
学习 3D 形状和环境的生成模型
- 批准号:
RGPIN-2019-07098 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
The Role of Cooperative Atomic Motion in the Plastic Deformation of Metallic Glasses
原子协同运动在金属玻璃塑性变形中的作用
- 批准号:
RGPIN-2017-03814 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
New Algorithms and Analyses for Partially Observable Markov Decision Processes
部分可观察马尔可夫决策过程的新算法和分析
- 批准号:
RGPIN-2014-04979 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
The Role of Cooperative Atomic Motion in the Plastic Deformation of Metallic Glasses
原子协同运动在金属玻璃塑性变形中的作用
- 批准号:
RGPIN-2017-03814 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Learning Generative Models of 3D Shapes and Environments
学习 3D 形状和环境的生成模型
- 批准号:
RGPIN-2019-07098 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
New Algorithms and Analyses for Partially Observable Markov Decision Processes
部分可观察马尔可夫决策过程的新算法和分析
- 批准号:
RGPIN-2014-04979 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
The Role of Cooperative Atomic Motion in the Plastic Deformation of Metallic Glasses
原子协同运动在金属玻璃塑性变形中的作用
- 批准号:
RGPIN-2017-03814 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Learning Generative Models of 3D Shapes and Environments
学习 3D 形状和环境的生成模型
- 批准号:
RGPIN-2019-07098 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
A Novel Automatic Neural Network Feature Extractor
一种新型自动神经网络特征提取器
- 批准号:
DP210100640 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Projects
HBCU-Excellence in Research: Understanding Atmospheric Moist Convection and Organization Using Automatic Feature Identification and Tracking
HBCU-卓越研究:使用自动特征识别和跟踪了解大气潮湿对流和组织
- 批准号:
1832121 - 财政年份:2018
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Probabilistic Models for Automatic Equivariant Feature Discovery
自动等变特征发现的概率模型
- 批准号:
436054-2013 - 财政年份:2017
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
ODOMATIC: Automatic Species Identification, Functional Morphology, and Feature Extraction to alleviate the taxonomic impediment and broaden citizen science tools.
ODOMATIC:自动物种识别、功能形态学和特征提取,以减轻分类学障碍并扩大公民科学工具。
- 批准号:
1564386 - 财政年份:2016
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Automatic Construction of Feature Extraction Process Based on Combinatorial Optimization of Image Processing Filters
基于图像处理滤波器组合优化的特征提取过程自动构建
- 批准号:
15K16029 - 财政年份:2015
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Probabilistic Models for Automatic Equivariant Feature Discovery
自动等变特征发现的概率模型
- 批准号:
436054-2013 - 财政年份:2015
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
LIDAR Automatic Feature Detection and Object Classification
LIDAR 自动特征检测和物体分类
- 批准号:
411254-2010 - 财政年份:2015
- 资助金额:
$ 1.17万 - 项目类别:
Collaborative Research and Development Grants
LIDAR Automatic Feature Detection and Object Classification
LIDAR 自动特征检测和物体分类
- 批准号:
411254-2010 - 财政年份:2014
- 资助金额:
$ 1.17万 - 项目类别:
Collaborative Research and Development Grants
Automated Green Mining: Automatic Feature Discovery of Software Power Use
自动化绿色挖矿:软件用电特征自动发现
- 批准号:
466769-2014 - 财政年份:2014
- 资助金额:
$ 1.17万 - 项目类别:
University Undergraduate Student Research Awards
Probabilistic Models for Automatic Equivariant Feature Discovery
自动等变特征发现的概率模型
- 批准号:
436054-2013 - 财政年份:2014
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual