Learning Generative Models of 3D Shapes and Environments

学习 3D 形状和环境的生成模型

基本信息

  • 批准号:
    RGPIN-2019-07098
  • 负责人:
  • 金额:
    $ 4.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

One of the most intriguing and reoccurring questions in AI and computer science is when a machine can be considered to possess human-level intelligence. In its best-known version, the Turing Test judges the humanness of a machine by its ability to make natural language conversations. In 2014, a chatbot named Eugene was considered by many to have passed the test. So is Turing Test the best choice? Is it too easy? In the lesser-known "Lovelace Test", named after Lady Ada Lovelace, machines are judged by their creativity or originality. Lovelace pre-dated Turing by about 100 years and is often credited as the world's first computer programmer. In 1843, she remarked that computers cannot be thought to possess human intelligence until they can generate something original, which they were not programmed to do. Can a machine truly become creative? That is the ultimate question and the long-term pursuit would be to close the gap between machines and humans in creativity. In the shorter term, and as a computer graphics researcher, I want to tackle a more tangible problem first: to train machines to learn and execute generative models of 3D shapes and environments, where the outcomes do not have to be creative. While classical graphics mainly focuses on realistic image synthesis from explicit scene descriptions, in the new era of graphics, we wish to synthesize all forms of visual contents, where the inputs can be abstract (e.g., texts) or consist of only a set of exemplars. My current research objective is to advance data-driven visual content creation and geometric deep learning, making "big 3D data" a reality and fulfilling my four V's for data generation. Namely, the generated data should be in large volume and with cross-category variety, intra-category variation, and novelty - and ultimately, originality, to pass the Lovelace Test. In the next five years, I will advance the state of the art in developing and training generative models for 3D shapes and environments, enriching visual contents and design prototypes to serve applications in AR/VR, robotics, education, health, smart homes, and design and manufacturing. As well, I will keep pushing the boundary of computational creativity.
在人工智能和计算机科学中,最有趣、最反复出现的问题之一是,一台机器何时可以被认为拥有人类水平的智能。在其最著名的版本中,图灵测试通过机器进行自然语言对话的能力来判断机器是否人性化。2014年,一个名叫尤金的聊天机器人被许多人认为通过了测试。那么图灵测试是最好的选择吗?是不是太简单了?在以Ada Lovelace女士命名的不太为人所知的“Lovelace测试”中,机器的评判标准是它们的创造力或独创性。洛夫莱斯比图灵早了大约100年,通常被认为是世界上第一个计算机程序员。1843年,她指出,除非计算机能够产生一些原始的东西,而这些东西并不是编程赋予它们的,否则它们就不能被认为拥有人类的智慧。机器真的能变得有创造力吗?这是最终的问题,而长期的追求将是缩小机器与人类在创造力方面的差距。在短期内,作为一名计算机图形学研究人员,我想首先解决一个更切实的问题:训练机器学习和执行3D形状和环境的生成模型,其结果不必是创造性的。经典图形学主要侧重于从明确的场景描述中合成逼真的图像,而在图形学的新时代,我们希望合成所有形式的视觉内容,其中输入可以是抽象的(例如文本)或仅由一组范例组成。我目前的研究目标是推进数据驱动的视觉内容创作和几何深度学习,使“大3D数据”成为现实,实现我对数据生成的四个V。也就是说,生成的数据应该是大量的,具有跨类别的多样性,类别内的变化,以及新颖性,最终是独创性,以通过Lovelace测试。在接下来的五年里,我将在开发和培训3D形状和环境的生成模型方面推进最先进的技术,丰富视觉内容和设计原型,以服务于AR/VR、机器人、教育、健康、智能家居、设计和制造等领域的应用。同时,我将继续推动计算创造力的边界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhang, Hao其他文献

Ultrathin Zincophilic Interphase Regulated Electric Double Layer Enabling Highly Stable Aqueous Zinc-Ion Batteries.
  • DOI:
    10.1007/s40820-023-01312-1
  • 发表时间:
    2024-01-25
  • 期刊:
  • 影响因子:
    26.6
  • 作者:
    Chen, Yimei;Deng, Zhiping;Sun, Yongxiang;Li, Yue;Zhang, Hao;Li, Ge;Zeng, Hongbo;Wang, Xiaolei
  • 通讯作者:
    Wang, Xiaolei
Single-Fourier transform based full-bandwidth Fresnel diffraction
基于单傅里叶变换的全带宽菲涅耳衍射
  • DOI:
    10.1088/2040-8986/abdf68
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Zhang, Wenhui;Zhang, Hao;Jin, Guofan
  • 通讯作者:
    Jin, Guofan
Efficient expansion of rare human circulating hematopoietic stem/progenitor cells in steady-state blood using a polypeptide-forming 3D culture.
使用形成多肽的 3D 培养物有效扩增稳态血液中稀有的人类循环造血干/祖细胞
  • DOI:
    10.1007/s13238-021-00900-4
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    21.1
  • 作者:
    Xu, Yulin;Zeng, Xiangjun;Zhang, Mingming;Wang, Binsheng;Guo, Xin;Shan, Wei;Cai, Shuyang;Luo, Qian;Li, Honghu;Li, Xia;Li, Xue;Zhang, Hao;Wang, Limengmeng;Lin, Yu;Liu, Lizhen;Li, Yanwei;Zhang, Meng;Yu, Xiaohong;Qian, Pengxu;Huang, He
  • 通讯作者:
    Huang, He
Association between intraoperative intravenous lidocaine infusion and survival in patients undergoing pancreatectomy for pancreatic cancer: a retrospective study
术中静脉注射利多卡因与因胰腺癌接受胰腺切除术的患者生存之间的关系:一项回顾性研究
  • DOI:
    10.1016/j.bja.2020.03.034
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Zhang, Hao;Yang, Li;Miao, Changhong
  • 通讯作者:
    Miao, Changhong
Spatial diversity processing mechanism based on the distributed underwater acoustic communication system.
  • DOI:
    10.1371/journal.pone.0296117
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhou, Manli;Zhang, Hao;Lv, Tingting;Gao, Yong;Duan, Yingying
  • 通讯作者:
    Duan, Yingying

Zhang, Hao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhang, Hao', 18)}}的其他基金

Understanding Hydrogen Embrittlement in Steels from Atomistic Perspective
从原子角度理解钢中的氢脆
  • 批准号:
    RGPIN-2022-03661
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Generative Models of 3D Shapes and Environments
学习 3D 形状和环境的生成模型
  • 批准号:
    RGPIN-2019-07098
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Cooperative Atomic Motion in the Plastic Deformation of Metallic Glasses
原子协同运动在金属玻璃塑性变形中的作用
  • 批准号:
    RGPIN-2017-03814
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
New Algorithms and Analyses for Partially Observable Markov Decision Processes
部分可观察马尔可夫决策过程的新算法和分析
  • 批准号:
    RGPIN-2014-04979
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Cooperative Atomic Motion in the Plastic Deformation of Metallic Glasses
原子协同运动在金属玻璃塑性变形中的作用
  • 批准号:
    RGPIN-2017-03814
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Generative Models of 3D Shapes and Environments
学习 3D 形状和环境的生成模型
  • 批准号:
    RGPIN-2019-07098
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
New Algorithms and Analyses for Partially Observable Markov Decision Processes
部分可观察马尔可夫决策过程的新算法和分析
  • 批准号:
    RGPIN-2014-04979
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Cooperative Atomic Motion in the Plastic Deformation of Metallic Glasses
原子协同运动在金属玻璃塑性变形中的作用
  • 批准号:
    RGPIN-2017-03814
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Generative Models of 3D Shapes and Environments
学习 3D 形状和环境的生成模型
  • 批准号:
    RGPIN-2019-07098
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Cooperative Atomic Motion in the Plastic Deformation of Metallic Glasses
原子协同运动在金属玻璃塑性变形中的作用
  • 批准号:
    507975-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似海外基金

CAREER: Generative Item, Response, and Feedback Models in Assessment and Learning
职业:评估和学习中的生成项目、响应和反馈模型
  • 批准号:
    2237676
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
RI: Medium: Foundations of Self-Supervised Learning Through the Lens of Probabilistic Generative Models
RI:媒介:通过概率生成模型的视角进行自我监督学习的基础
  • 批准号:
    2211907
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
Myc Transcription Factor Inhibitor Design: Integrating Atomic and Mesoscale with Semi-Supervised Generative Deep Learning Models
Myc 转录因子抑制剂设计:将原子和中尺度与半监督生成深度学习模型相结合
  • 批准号:
    10463080
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
PHOENIX: Generative models and Deep Reinforcement Learning for Geospatial Computer Vision
PHOENIX:地理空间计算机视觉的生成模型和深度强化学习
  • 批准号:
    571887-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Alliance Grants
FET: Medium: A Quantum Computing Based Approach to Undirected Generative Machine Learning Models
FET:中:基于量子计算的无向生成机器学习模型方法
  • 批准号:
    2211841
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Continuing Grant
Generative models for reinforcement learning with multimodal data in robotics
机器人技术中多模态数据强化学习的生成模型
  • 批准号:
    547562-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Myc Transcription Factor Inhibitor Design: Integrating Atomic and Mesoscale with Semi-Supervised Generative Deep Learning Models
Myc 转录因子抑制剂设计:将原子和中尺度与半监督生成深度学习模型相结合
  • 批准号:
    10745272
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
Generative models for reinforcement learning with multimodal data in robotics
机器人技术中多模态数据强化学习的生成模型
  • 批准号:
    547562-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Learning Generative Models of 3D Shapes and Environments
学习 3D 形状和环境的生成模型
  • 批准号:
    RGPIN-2019-07098
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Building an AI for Data Science: Learning Statistical Structure Directly from Data through Structured Deep Generative Models
构建数据科学人工智能:通过结构化深度生成模型直接从数据中学习统计结构
  • 批准号:
    518716-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了