Diophantine problems : modern and classical perspectives
丢番图问题:现代与古典的观点
基本信息
- 批准号:250160-2012
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Diophantine problems have a classical appeal that reaches beyond research mathematics, in some cases such as Fermat's Last Theorem, even as far as popular culture. For a practising mathematician, they provide test-cases for the latest theorems and conjectures from Arithmetic and, indeed, Algebraic Geometry, for understanding the arithmetic of curves and surfaces, and for observing the interplay between analytic and algebraic techniques, between the theoretical and the computational.
丢番图问题有着超越研究数学的经典吸引力,在某些情况下,如费马大定理,甚至流行文化。对于一个练习数学家,他们提供测试案例的最新定理和代数,实际上,代数几何,理解算术的曲线和曲面,并观察分析和代数技术之间的相互作用,之间的理论和计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bennett, Michael其他文献
Delirium After Mechanical Ventilation in Intensive Care Units: The Cognitive and Psychosocial Assessment (CAPA) Study Protocol
- DOI:
10.2196/resprot.6660 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:1.7
- 作者:
Bulic, Daniella;Bennett, Michael;Van Haren, Frank - 通讯作者:
Van Haren, Frank
Unusual skin and testicular lesions in a patient with CMML
- DOI:
10.1016/j.ejim.2005.09.027 - 发表时间:
2006-07-01 - 期刊:
- 影响因子:8
- 作者:
Dyachenko, Pavel;Rozenman, Dganit;Bennett, Michael - 通讯作者:
Bennett, Michael
Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass.
- DOI:
10.1016/j.jacc.2011.08.017 - 发表时间:
2011-11-22 - 期刊:
- 影响因子:24
- 作者:
Krawczeski, Catherine D.;Goldstein, Stuart L.;Woo, Jessica G.;Wang, Yu;Piyaphanee, Nuntawan;Ma, Qing;Bennett, Michael;Devarajan, Prasad - 通讯作者:
Devarajan, Prasad
Asymmetric stability among the transmembrane helices of lactose permease
- DOI:
10.1021/bi060355g - 发表时间:
2006-07-04 - 期刊:
- 影响因子:2.9
- 作者:
Bennett, Michael;D'Rozario, Robert;Yeagle, Philip L. - 通讯作者:
Yeagle, Philip L.
Urine biochemistry in septic and non-septic acute kidney injury: a prospective observational study
- DOI:
10.1016/j.jcrc.2012.10.007 - 发表时间:
2013-08-01 - 期刊:
- 影响因子:3.7
- 作者:
Bagshaw, Sean M.;Bennett, Michael;Bellomo, Rinaldo - 通讯作者:
Bellomo, Rinaldo
Bennett, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bennett, Michael', 18)}}的其他基金
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems : modern and classical perspectives
丢番图问题:现代与古典的观点
- 批准号:
250160-2012 - 财政年份:2015
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems : modern and classical perspectives
丢番图问题:现代与古典的观点
- 批准号:
250160-2012 - 财政年份:2014
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems : modern and classical perspectives
丢番图问题:现代与古典的观点
- 批准号:
250160-2012 - 财政年份:2012
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems: new and old perspectives
丢番图问题:新观点和旧观点
- 批准号:
250160-2007 - 财政年份:2011
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems: new and old perspectives
丢番图问题:新观点和旧观点
- 批准号:
250160-2007 - 财政年份:2010
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems
解决现代电路布局问题的先进大规模优化方法
- 批准号:
RGPIN-2016-03833 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems
解决现代电路布局问题的先进大规模优化方法
- 批准号:
RGPIN-2016-03833 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Approaching Modern Problems in Multivariate Time Series via Network Modelling and State-Space Methods.
通过网络建模和状态空间方法解决多元时间序列中的现代问题。
- 批准号:
2440162 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Studentship
Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems
解决现代电路布局问题的先进大规模优化方法
- 批准号:
RGPIN-2016-03833 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Research and study for understanding the dynamics of loanword notation in modern Japanese and solving its problems
了解现代日语借词符号动态并解决其问题的研究
- 批准号:
19K00633 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems
解决现代电路布局问题的先进大规模优化方法
- 批准号:
RGPIN-2016-03833 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems
解决现代电路布局问题的先进大规模优化方法
- 批准号:
RGPIN-2016-03833 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
AF: SMALL : Algorithmic and Game Theoretic Problems Arising in Modern Matching Markets
AF:小:现代匹配市场中出现的算法和博弈论问题
- 批准号:
1813135 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems
解决现代电路布局问题的先进大规模优化方法
- 批准号:
RGPIN-2016-03833 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual