Diophantine problems
丢番图问题
基本信息
- 批准号:RGPIN-2018-03734
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Number theory is one of the most ancient fields within mathematics and yet, even today, continues to provide unexpected applications within and without the discipline. It is also somewhat notorious for having classical problems that have the feature that they are easy to state, yet, apparently, hard to solve. Our proposed research focusses on a number of results of this nature; we term our approach "explicit methods for Diophantine problems". The machinery we employ to prove our results is somewhat diverse. One of the basic fields we utilize is that of Diophantine approximation, which, classically, seeks to measure how well rational numbers approximate irrational ones. Where our proposal has a certain amount of novelty is in its combining these techniques with modifications of those famously used by Wiles to prove Fermat's Last Theorem (together with results coming from other areas of number theory, analytic and combinatorial).******Our proposed work is centred upon two thematically-connected problems - theoretical and computational aspects of elliptic curves and explicit solution of classical problems from Diophantine equations. A common thread running through much of these two problems is their connection to solving a class of what are known as S-unit equations. Finding the solutions to such equations over cubic number fields enables us to tabulate all elliptic curves with rational coefficients and "small" conductor (known to be a finite problem since work of Shafarevich). Extending this to fields of higher degree allows one to carry this analysis to elliptic curves over number fields. Our proposed research will provide tables of such curves that greatly extend the current literature, as well as computational tools for solving S-unit equations that should find use in a wide variety of other settings.******Our methods will also allow us to make progress on a number of other classical problems, including that of finding shifted powers in recurrence sequences, various polynomial-exponential equations, and the general n-term S-unit equation. To carry this out, we must first sharpen and generalize a number of recent results on ternary equations arising from the modularity of associated Galois representations, as well as the hypergeometric method of Thue-Siegel. In the course of carrying out this latter goal, we are led to a project in analytic and computational number theory, joint with Martin, O'Bryant and Rechnitzer, where we seek to obtain completely explicit bounds with error terms saving at least a logarithm for each standard function counting primes in arithmetic progression.
数论是数学中最古老的领域之一,然而,即使在今天,数论仍然在学科内外提供意想不到的应用。它还因为一些经典问题而臭名昭著,这些问题的特点是它们很容易陈述,但显然很难解决。我们建议的研究集中在这种性质的一些结果上;我们称我们的方法为“丢番图问题的显式方法”。我们用来证明结果的方法有些不同。我们使用的一个基本领域是丢芬图近似值,经典地,它试图衡量有理数近似无理数的程度。我们的建议有一定的新颖性,因为它将这些技术与Wiles用来证明费马大定理的那些著名的修改相结合(以及来自数论,解析和组合的其他领域的结果)。******我们建议的工作集中在两个主题连接的问题-椭圆曲线的理论和计算方面以及丢番图方程经典问题的显式解。贯穿这两个问题的一个共同点是,它们都与解决一类所谓的s单位方程有关。在三次数域上找到这些方程的解使我们能够将所有具有有理系数和“小”导体的椭圆曲线(自Shafarevich的工作以来已知是有限问题)制成表格。将此扩展到更高次的域,可以将此分析应用于多个域上的椭圆曲线。我们提出的研究将提供这些曲线的表格,极大地扩展了当前的文献,以及求解s单位方程的计算工具,这些计算工具应该在各种其他设置中找到用途。******我们的方法也将使我们在许多其他经典问题上取得进展,包括在递归序列中寻找移位的幂,各种多项式指数方程,以及一般的n项s单位方程。为了实现这一点,我们必须首先锐化和推广一些最近的关于三元方程的结果,这些结果是由相关伽罗瓦表示的模块化引起的,以及tue - siegel的超几何方法。在实现后一个目标的过程中,我们与Martin, O'Bryant和Rechnitzer合作,在分析和计算数论方面进行了一个项目,在这个项目中,我们寻求获得带有误差项的完全显式界限,为每个标准函数在等差数列中计数素数至少节省一个对数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bennett, Michael其他文献
Delirium After Mechanical Ventilation in Intensive Care Units: The Cognitive and Psychosocial Assessment (CAPA) Study Protocol
- DOI:
10.2196/resprot.6660 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:1.7
- 作者:
Bulic, Daniella;Bennett, Michael;Van Haren, Frank - 通讯作者:
Van Haren, Frank
Unusual skin and testicular lesions in a patient with CMML
- DOI:
10.1016/j.ejim.2005.09.027 - 发表时间:
2006-07-01 - 期刊:
- 影响因子:8
- 作者:
Dyachenko, Pavel;Rozenman, Dganit;Bennett, Michael - 通讯作者:
Bennett, Michael
Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass.
- DOI:
10.1016/j.jacc.2011.08.017 - 发表时间:
2011-11-22 - 期刊:
- 影响因子:24
- 作者:
Krawczeski, Catherine D.;Goldstein, Stuart L.;Woo, Jessica G.;Wang, Yu;Piyaphanee, Nuntawan;Ma, Qing;Bennett, Michael;Devarajan, Prasad - 通讯作者:
Devarajan, Prasad
Asymmetric stability among the transmembrane helices of lactose permease
- DOI:
10.1021/bi060355g - 发表时间:
2006-07-04 - 期刊:
- 影响因子:2.9
- 作者:
Bennett, Michael;D'Rozario, Robert;Yeagle, Philip L. - 通讯作者:
Yeagle, Philip L.
Urine biochemistry in septic and non-septic acute kidney injury: a prospective observational study
- DOI:
10.1016/j.jcrc.2012.10.007 - 发表时间:
2013-08-01 - 期刊:
- 影响因子:3.7
- 作者:
Bagshaw, Sean M.;Bennett, Michael;Bellomo, Rinaldo - 通讯作者:
Bellomo, Rinaldo
Bennett, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bennett, Michael', 18)}}的其他基金
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems : modern and classical perspectives
丢番图问题:现代与古典的观点
- 批准号:
250160-2012 - 财政年份:2015
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems : modern and classical perspectives
丢番图问题:现代与古典的观点
- 批准号:
250160-2012 - 财政年份:2014
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems : modern and classical perspectives
丢番图问题:现代与古典的观点
- 批准号:
250160-2012 - 财政年份:2013
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems : modern and classical perspectives
丢番图问题:现代与古典的观点
- 批准号:
250160-2012 - 财政年份:2012
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems: new and old perspectives
丢番图问题:新观点和旧观点
- 批准号:
250160-2007 - 财政年份:2011
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems: new and old perspectives
丢番图问题:新观点和旧观点
- 批准号:
250160-2007 - 财政年份:2010
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Problems in the Geometry of Numbers and Diophantine Analysis
数几何问题和丢番图分析
- 批准号:
2327098 - 财政年份:2023
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Diophantine approximation, related problems, and applications to the existence or non-existence of arithmetic progressions
丢番图近似、相关问题以及算术级数存在或不存在的应用
- 批准号:
22KJ0375 - 财政年份:2023
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A study on Diophantine problems via combinatorial methods
丢番图问题的组合方法研究
- 批准号:
22K13900 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Discrete integrable systems and Diophantine problems
离散可积系统和丢番图问题
- 批准号:
21K18577 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Moduli of Elliptic Curves and Classical Diophantine Problems
椭圆曲线模和经典丢番图问题
- 批准号:
EP/S031537/1 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Research Grant
Problems in the Geometry of Numbers and Diophantine Analysis
数几何问题和丢番图分析
- 批准号:
2001281 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Diophantine problems
丢番图问题
- 批准号:
RGPIN-2018-03734 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual