Theory and applications of impulse extension equations
脉冲扩展方程的理论与应用
基本信息
- 批准号:341294-2013
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Impulsive differential equations have a host of applications to both biological and physical problems, such as infectious disease modelling, control theory and population dynamics. The theory is founded upon the assumption that it is often natural to assume that sufficiently short perturbations in the system occur instantaneously, since their length is negligible in comparison with the duration of the process. Still, it is natural to ask the question: "Is it always safe to assume that sufficiently short processes occur instantaneously?" This question comes up in practice when one attempts to find an estimate on the global maximum of an impulsive periodic orbit, which has many real-world applications. I intend to explore the case of fixed impulses that have a nontrivial homogeneous component and their corresponding impulse extension equations, as well as extend the results to equations with unfixed and autonomous impulses. Following this, we will work at developing similar techniques for nonlinear systems. We will also link impulse extension equations to Filippov systems, which are dynamical systems with discontinuities in the derivatives. Filippov systems have many applications in science and engineering, including harvesting thresholds, oilwell drilling and liquid-gas reactions, for which the differential equation is extended to a differential inclusion. By understanding the nature and limitations of impulsive approximations to short-burst behaviour, I am well-poised to develop and apply the theory of impulse extension equations. It is my view that this will be a tool to be employed alongside impulsive differential equations, which will be useful in an applied context when dealing with biological, physical or other real-word models where precision of the results are important.
脉冲微分方程在生物和物理问题中有许多应用,如传染病建模,控制理论和种群动力学。该理论是建立在这样一个假设之上的,即假设系统中足够短的扰动是瞬时发生的,这是很自然的,因为它们的长度与过程的持续时间相比是可以忽略不计的。尽管如此,人们还是很自然地提出这样一个问题:“假设足够短的过程是瞬间发生的,这总是安全的吗?“这个问题出现在实践中,当人们试图找到一个估计的全球最大的脉冲周期轨道,这有许多现实世界的应用。我打算探讨的情况下,固定的脉冲,有一个非平凡的齐次分量和相应的脉冲扩展方程,以及扩展的结果与不固定的和自主的脉冲方程。在此之后,我们将致力于为非线性系统开发类似的技术。我们还将脉冲扩展方程联系到Filippov系统,Filippov系统是导数中具有不连续性的动力系统。Filippov系统在科学和工程中有着广泛的应用,包括收获阈值、油井钻探和液气反应等。通过理解脉冲近似的性质和局限性,以短突发行为,我准备好发展和应用脉冲扩展方程的理论。我认为,这将是一个工具,可以与脉冲微分方程一起使用,这将是有用的,在应用背景下,当处理生物,物理或其他真实世界的模型,其中精度的结果是重要的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Smith, Robert其他文献
An outbreak of Salmonella Typhimurium associated with the consumption of raw liver at an Eid al-Adha celebration in Wales (UK), July 2021.
- DOI:
10.1017/s0950268823001887 - 发表时间:
2023-11-30 - 期刊:
- 影响因子:4.2
- 作者:
Adamson, James P.;Sawyer, Clare;Hobson, Gemma;Clark, Emily;Fina, Laia;Orife, Oghogho;Smith, Robert;Williams, Chris;Hughes, Harriet;Jones, Allyson;Swaysland, Sarah;Somoye, Oluwaseun;Phillips, Ryan;Iqbal, Junaid;Mohammed, Israa;Karani, George;Thomas, Daniel Rhys - 通讯作者:
Thomas, Daniel Rhys
The moral space in entrepreneurship: an exploration of ethical imperatives and the moral legitimacy of being enterprising
- DOI:
10.1080/08985620701672377 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:5.6
- 作者:
Anderson, Alistair R.;Smith, Robert - 通讯作者:
Smith, Robert
Protection against severe hypokalemia but impaired cardiac repolarization after intense rowing exercise in healthy humans receiving salbutamol
- DOI:
10.1152/japplphysiol.00680.2017 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:3.3
- 作者:
Atanasovska, Tania;Smith, Robert;McKenna, Michael J. - 通讯作者:
McKenna, Michael J.
Effects of pH and temperature on coupling nitritation and anammox in biofilters treating dairy wastewater
pH和温度对生物过滤器处理乳品废水中亚硝化和厌氧氨氧化耦合的影响
- DOI:
10.1016/j.ecoleng.2012.06.035 - 发表时间:
2012-10 - 期刊:
- 影响因子:3.8
- 作者:
Wang, Ziyuan;Smith, Robert;Shayya, Walid;Pei, Yuansheng - 通讯作者:
Pei, Yuansheng
Uncovering the hydride ion diffusion pathway in barium hydride via neutron spectroscopy.
- DOI:
10.1038/s41598-022-10199-8 - 发表时间:
2022-04-13 - 期刊:
- 影响因子:4.6
- 作者:
Novak, Eric;Daemen, Luke;Ramirez-Cuesta, Anibal Javier;Cheng, Yongqiang;Smith, Robert;Egami, Takeshi;Jalarvo, Niina - 通讯作者:
Jalarvo, Niina
Smith, Robert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Smith, Robert', 18)}}的其他基金
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Design and fabrication of a terahertz time domain vector network analyzer for material and device characterization
用于材料和器件表征的太赫兹时域矢量网络分析仪的设计和制造
- 批准号:
RGPIN-2022-03277 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Design and fabrication of a terahertz time domain vector network analyzer for material and device characterization
用于材料和器件表征的太赫兹时域矢量网络分析仪的设计和制造
- 批准号:
DGECR-2022-00086 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Launch Supplement
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Using past pandemics to guide COVID-19 predictions
利用过去的流行病来指导 COVID-19 预测
- 批准号:
554986-2020 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Alliance Grants
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Study on ultrafast and broadband impulse response measurement method and its applications
超快宽带脉冲响应测量方法及其应用研究
- 批准号:
18H01451 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theory and applications of impulse extension equations
脉冲扩展方程的理论与应用
- 批准号:
RGPIN-2014-05110 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
A novel rodent model of dopamine agonist-induced impulsive control disorders
多巴胺激动剂诱导的冲动控制障碍的新型啮齿动物模型
- 批准号:
8093443 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
A novel rodent model of dopamine agonist-induced impulsive control disorders
多巴胺激动剂诱导的冲动控制障碍的新型啮齿动物模型
- 批准号:
8288065 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
CMOS Impulse Radio Ultra-WideBand Transceiver for Medical Applications
适用于医疗应用的 CMOS 脉冲无线电超宽带收发器
- 批准号:
391888-2010 - 财政年份:2010
- 资助金额:
$ 0.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CMOS Impulse Radio Ultra-WideBand Transceiver for Medical Applications
适用于医疗应用的 CMOS 脉冲无线电超宽带收发器
- 批准号:
391888-2010 - 财政年份:2010
- 资助金额:
$ 0.8万 - 项目类别:
Postgraduate Scholarships - Doctoral
Effects of abused drugs and genetics on impulsive choice
滥用药物和遗传学对冲动选择的影响
- 批准号:
7292817 - 财政年份:2006
- 资助金额:
$ 0.8万 - 项目类别:
Study of physics and practical applications of laser-driven in-tube accelerator
激光驱动管内加速器物理及实际应用研究
- 批准号:
13852014 - 财政年份:2001
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Qualitative theory of differential equations with/without impulse effects and applications
有/无脉冲效应微分方程的定性理论及应用
- 批准号:
106000-1991 - 财政年份:1993
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Qualitative theory of differential equations with/without impulse effects and applications
有/无脉冲效应微分方程的定性理论及应用
- 批准号:
106000-1991 - 财政年份:1992
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual