Theory and applications of impulse extension equations
脉冲扩展方程的理论与应用
基本信息
- 批准号:RGPIN-2014-05110
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Impulsive differential equations have a host of applications to both biological and physical problems, such as infectious disease modelling, control theory and population dynamics. The theory is founded upon the assumption that it is often natural to assume that sufficiently short perturbations in the system occur instantaneously, since their length is negligible in comparison with the duration of the process. Still, it is natural to ask the question: “Is it always safe to assume that sufficiently short processes occur instantaneously?” This question comes up in practice when one attempts to find an estimate on the global maximum of an impulsive periodic orbit, which has many real-world applications. Although the degree of coarseness of an approximation of a nonimpulsive differential equation by an impulsive one is important, we choose to tackle this question of “approximation” from a broader angle. In particular, if we view an impulsive differential equation as a limiting case of a physical process (eg as the perturbation time approaches zero), can we be confident that the existence of an impulsive periodic solution guarantees that a periodic solution exists in the original physical process, for sufficiently short impulses? Our goal is to develop a process by which we can construct an ordinary differential equation from the impulsive differential equation that carries with it the “structure” of the impulse condition, but allows the impulse to last a finite, nonzero amount of time. The conditions that we should have are: 1. The amount of time this new, “stretched” or “extended” impulse lasts should be short enough that new impulses do not occur before the previous one has finished. 2. The impulse “extension” should have the same effect on the system as the original impulse in the absence of system evolution. 3. The impulse extension should have a periodicity condition equivalent to the original impulse. We call this new class of differential equations "impulse extension equations". One can interpret it in one of two ways: as a differential equation which “approximates” the impulsive differential equation it is built from, or as a more realistic model of a system that the impulsive differential equation strives to emulate by the assumption that impulses are acting instantaneously on the system. I intend to explore the case of fixed impulses that have a nontrivial homogeneous component and their corresponding impulse extension equations, as well as extend the results to equations with unfixed and autonomous impulses. Following this, we will work at developing similar techniques for nonlinear systems. We will also link impulse extension equations to Fillipov systems, which are dynamical systems with discontinuities in the derivatives. Filippov systems have many applications in science and engineering, including harvesting thresholds, oilwell drilling and liquid-gas reactions, for which the differential equation is extended to a differential inclusion. My considerable work on impulsive differential equations and their applications stands me in good stead for this project. By understanding the nature and limitations of impulsive approximations to short-burst behaviour, I am well-poised to develop and apply the theory of impulse extension equations. It is my view that this will be a tool to be employed alongside impulsive differential equations, which will be useful in an applied context when dealing with biological, physical or other real-word models where precision of the results are important.
脉冲微分方程在生物和物理问题上有许多应用,例如传染病建模、控制理论和群体动力学。该理论建立在这样的假设之上:通常很自然地假设系统中足够短的扰动是瞬时发生的,因为与过程的持续时间相比,它们的长度可以忽略不计。尽管如此,我们还是很自然地会问这样一个问题:“假设足够短的过程是瞬时发生的,这总是安全的吗?”当人们试图找到脉冲周期轨道的全局最大值的估计时,这个问题在实践中就会出现,这在现实世界中有许多应用。尽管用脉冲微分方程逼近非脉冲微分方程的粗糙程度很重要,但我们选择从更广泛的角度来解决“逼近”这个问题。特别是,如果我们将脉冲微分方程视为物理过程的极限情况(例如,当扰动时间接近零时),那么对于足够短的脉冲,我们是否可以确信脉冲周期解的存在保证了原始物理过程中存在周期解?我们的目标是开发一种过程,通过该过程我们可以从脉冲微分方程构造一个常微分方程,该微分方程带有脉冲条件的“结构”,但允许脉冲持续有限的非零时间。我们应该具备的条件是: 1. 这个新的、“延长的”或“延长的”脉冲持续的时间应该足够短,以便在前一个脉冲结束之前不会出现新的脉冲。 2. 在没有系统演化的情况下,脉冲“延伸”对系统的影响应该与原始脉冲相同。 3. 脉冲延伸应具有与原始脉冲等效的周期性条件。我们将这一类新的微分方程称为“脉冲扩展方程”。人们可以用两种方式之一来解释它:作为一个微分方程,“近似”它所建立的脉冲微分方程,或者作为一个更现实的系统模型,脉冲微分方程通过假设脉冲瞬时作用在系统上来努力模拟。我打算探索具有非平凡齐次分量的固定脉冲的情况及其相应的脉冲扩展方程,并将结果扩展到具有不固定和自主脉冲的方程。接下来,我们将致力于为非线性系统开发类似的技术。我们还将把脉冲扩展方程与菲利波夫系统联系起来,菲利波夫系统是导数不连续的动力系统。 Filippov 系统在科学和工程中具有许多应用,包括收获阈值、油井钻井和液-气反应,其中微分方程被扩展到微分包含。我在脉冲微分方程及其应用方面所做的大量工作对我这个项目很有帮助。通过了解短脉冲行为的脉冲近似的本质和局限性,我已经做好了开发和应用脉冲扩展方程理论的准备。我认为,这将是与脉冲微分方程一起使用的工具,在处理生物、物理或其他实际模型时,结果的精度很重要,这在应用环境中非常有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Smith, Robert其他文献
The moral space in entrepreneurship: an exploration of ethical imperatives and the moral legitimacy of being enterprising
- DOI:
10.1080/08985620701672377 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:5.6
- 作者:
Anderson, Alistair R.;Smith, Robert - 通讯作者:
Smith, Robert
An outbreak of Salmonella Typhimurium associated with the consumption of raw liver at an Eid al-Adha celebration in Wales (UK), July 2021.
- DOI:
10.1017/s0950268823001887 - 发表时间:
2023-11-30 - 期刊:
- 影响因子:4.2
- 作者:
Adamson, James P.;Sawyer, Clare;Hobson, Gemma;Clark, Emily;Fina, Laia;Orife, Oghogho;Smith, Robert;Williams, Chris;Hughes, Harriet;Jones, Allyson;Swaysland, Sarah;Somoye, Oluwaseun;Phillips, Ryan;Iqbal, Junaid;Mohammed, Israa;Karani, George;Thomas, Daniel Rhys - 通讯作者:
Thomas, Daniel Rhys
Protection against severe hypokalemia but impaired cardiac repolarization after intense rowing exercise in healthy humans receiving salbutamol
- DOI:
10.1152/japplphysiol.00680.2017 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:3.3
- 作者:
Atanasovska, Tania;Smith, Robert;McKenna, Michael J. - 通讯作者:
McKenna, Michael J.
Effects of pH and temperature on coupling nitritation and anammox in biofilters treating dairy wastewater
pH和温度对生物过滤器处理乳品废水中亚硝化和厌氧氨氧化耦合的影响
- DOI:
10.1016/j.ecoleng.2012.06.035 - 发表时间:
2012-10 - 期刊:
- 影响因子:3.8
- 作者:
Wang, Ziyuan;Smith, Robert;Shayya, Walid;Pei, Yuansheng - 通讯作者:
Pei, Yuansheng
Uncovering the hydride ion diffusion pathway in barium hydride via neutron spectroscopy.
- DOI:
10.1038/s41598-022-10199-8 - 发表时间:
2022-04-13 - 期刊:
- 影响因子:4.6
- 作者:
Novak, Eric;Daemen, Luke;Ramirez-Cuesta, Anibal Javier;Cheng, Yongqiang;Smith, Robert;Egami, Takeshi;Jalarvo, Niina - 通讯作者:
Jalarvo, Niina
Smith, Robert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Smith, Robert', 18)}}的其他基金
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Design and fabrication of a terahertz time domain vector network analyzer for material and device characterization
用于材料和器件表征的太赫兹时域矢量网络分析仪的设计和制造
- 批准号:
RGPIN-2022-03277 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Design and fabrication of a terahertz time domain vector network analyzer for material and device characterization
用于材料和器件表征的太赫兹时域矢量网络分析仪的设计和制造
- 批准号:
DGECR-2022-00086 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Launch Supplement
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Using past pandemics to guide COVID-19 predictions
利用过去的流行病来指导 COVID-19 预测
- 批准号:
554986-2020 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Alliance Grants
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Study on ultrafast and broadband impulse response measurement method and its applications
超快宽带脉冲响应测量方法及其应用研究
- 批准号:
18H01451 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theory and applications of impulse extension equations
脉冲扩展方程的理论与应用
- 批准号:
341294-2013 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
A novel rodent model of dopamine agonist-induced impulsive control disorders
多巴胺激动剂诱导的冲动控制障碍的新型啮齿动物模型
- 批准号:
8093443 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
A novel rodent model of dopamine agonist-induced impulsive control disorders
多巴胺激动剂诱导的冲动控制障碍的新型啮齿动物模型
- 批准号:
8288065 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
CMOS Impulse Radio Ultra-WideBand Transceiver for Medical Applications
适用于医疗应用的 CMOS 脉冲无线电超宽带收发器
- 批准号:
391888-2010 - 财政年份:2010
- 资助金额:
$ 0.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CMOS Impulse Radio Ultra-WideBand Transceiver for Medical Applications
适用于医疗应用的 CMOS 脉冲无线电超宽带收发器
- 批准号:
391888-2010 - 财政年份:2010
- 资助金额:
$ 0.8万 - 项目类别:
Postgraduate Scholarships - Doctoral
Effects of abused drugs and genetics on impulsive choice
滥用药物和遗传学对冲动选择的影响
- 批准号:
7292817 - 财政年份:2006
- 资助金额:
$ 0.8万 - 项目类别:
Study of physics and practical applications of laser-driven in-tube accelerator
激光驱动管内加速器物理及实际应用研究
- 批准号:
13852014 - 财政年份:2001
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Qualitative theory of differential equations with/without impulse effects and applications
有/无脉冲效应微分方程的定性理论及应用
- 批准号:
106000-1991 - 财政年份:1993
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Qualitative theory of differential equations with/without impulse effects and applications
有/无脉冲效应微分方程的定性理论及应用
- 批准号:
106000-1991 - 财政年份:1992
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual