Holography and Integrability in String Theory
弦理论中的全息性和可积性
基本信息
- 批准号:386260-2012
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Subatomic Physics Envelope - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our understanding of the force that binds together the fundamental constituents (quarks and gluons) of atomic nuclei is based on a theory called quantum chromodynamics. At very high energies the quarks move freely and we have a good description of what is going on. On the other hand, at everyday energies the quarks are confined together and our current theoretical tools and computational skills are very far from providing a good physical picture of the system. In technical terms, we have asymptotic freedom at short distances and confinement at large distances. The most basic questions such as what is the mass of a proton can not be accessed with our current theoretical tools. To understand nature at these scales we must develop new mathematical tools and better physical intuition. For some particle theories, the tools we were looking for seem to be at hand and go by the name of Holography and Integrability (i.e. exact solvability). These field theories also describe, in an holographic sense, the dynamics of a quantum theory of gravity called string theory. With the help of Integrability and Holography techniques we are thus moving closer to merging Einstein's theory of gravity and quantum mechanics, one of the most beautiful and important open problems in physics.
我们对将原子核的基本成分(夸克和胶子)结合在一起的力的理解是基于一种称为量子色动力学的理论。在非常高的能量下,夸克可以自由运动,我们可以很好地描述夸克的运动情况;另一方面,在日常能量下,夸克被限制在一起,我们目前的理论工具和计算技能还远远不能提供系统的良好物理图像。用专业术语来说,我们在短距离上有渐近自由,在长距离上有限制。最基本的问题,比如质子的质量是多少,用我们目前的理论工具是无法解决的。为了在这些尺度上理解自然,我们必须开发新的数学工具和更好的物理直觉。对于某些粒子理论,我们正在寻找的工具似乎就在手边,并被称为全息和可积性(即精确可解性)。这些场论也在全息意义上描述了引力的量子理论--弦理论的动力学。在可积性和全息技术的帮助下,我们正在接近爱因斯坦的引力理论和量子力学的融合,这是物理学中最美丽和最重要的开放问题之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vieira, Pedro其他文献
A Deep Learning Based Object Identification System for Forest Fire Detection
- DOI:
10.3390/fire4040075 - 发表时间:
2021-12-01 - 期刊:
- 影响因子:3.2
- 作者:
Guede-Fernandez, Federico;Martins, Leonardo;Vieira, Pedro - 通讯作者:
Vieira, Pedro
Volatile Organic Compound Monitoring during Extreme Wildfires: Assessing the Potential of Sensors Based on LbL and Sputtering Films.
- DOI:
10.3390/s22176677 - 发表时间:
2022-09-03 - 期刊:
- 影响因子:3.9
- 作者:
Magro, Catia;Goncalves, Oriana C.;Morais, Marcelo;Ribeiro, Paulo A.;Serio, Susana;Vieira, Pedro;Raposo, Maria - 通讯作者:
Raposo, Maria
Measuring adherence to inhaled control medication in patients with asthma: Comparison among an asthma app, patient self-report and physician assessment.
- DOI:
10.1002/clt2.12210 - 发表时间:
2023-02 - 期刊:
- 影响因子:4.4
- 作者:
Cachim, Afonso;Pereira, Ana Margarida;Almeida, Rute;Amaral, Rita;Alves-Correia, Magna;Vieira-Marques, Pedro;Chaves-Loureiro, Claudia;Ribeiro, Carmelita;Cardia, Francisca;Gomes, Joana;Vidal, Carmen;Silva, Eurico;Rocha, Sara;Rocha, Diana;Marques, Maria Luis;Pascoa, Rosalia;Morais, Daniela;Cruz, Ana Margarida;Santalha, Marta;Simoes, Jose Augusto;da Silva, Sofia;Silva, Diana;Gerardo, Rita;Bom, Filipa Todo;Morete, Ana;Vieira, Ines;Vieira, Pedro;Monteiro, Rosario;Raimundo, Maria Rosario;Monteiro, Luis;Neves, Angela;Santos, Carlos;Penas, Ana Margarida;Regadas, Rita;Marques, Jose Varanda;Rosendo, Ines;Aguiar, Margarida Abreu;Fernandes, Sara;Cardoso, Carlos Seica;Pimenta, Filipa;Meireles, Patricia;Goncalves, Mariana;Fonseca, Joao Almeida;Jacome, Cristina - 通讯作者:
Jacome, Cristina
Empowering Preventive Care with GECA Chatbot.
- DOI:
10.3390/healthcare11182532 - 发表时间:
2023-09-13 - 期刊:
- 影响因子:2.8
- 作者:
Maia, Eva;Vieira, Pedro;Praca, Isabel - 通讯作者:
Praca, Isabel
VisuaLeague: Player performance analysis using spatial-temporal data
- DOI:
10.1007/s11042-019-07952-z - 发表时间:
2019-12-01 - 期刊:
- 影响因子:3.6
- 作者:
Afonso, Ana Paula;Carmo, Maria Beatriz;Vieira, Pedro - 通讯作者:
Vieira, Pedro
Vieira, Pedro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vieira, Pedro', 18)}}的其他基金
Bootstrapping One Theory and Bootstrapping All Theories
引导一种理论和引导所有理论
- 批准号:
SAPIN-2020-00034 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Subatomic Physics Envelope - Individual
Bootstrapping One Theory and Bootstrapping All Theories
引导一种理论和引导所有理论
- 批准号:
SAPIN-2020-00034 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Subatomic Physics Envelope - Individual
Bootstrapping One Theory and Bootstrapping All Theories
引导一种理论和引导所有理论
- 批准号:
SAPIN-2020-00034 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Subatomic Physics Envelope - Individual
The Integrable Chromodynamic Flux Tube
可集成的色动力通量管
- 批准号:
SAPIN-2015-00039 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Subatomic Physics Envelope - Individual
The Integrable Chromodynamic Flux Tube
可集成的色动力通量管
- 批准号:
SAPIN-2015-00039 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Subatomic Physics Envelope - Individual
The Integrable Chromodynamic Flux Tube
可集成的色动力通量管
- 批准号:
SAPIN-2015-00039 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Subatomic Physics Envelope - Individual
The Integrable Chromodynamic Flux Tube
可集成的色动力通量管
- 批准号:
SAPIN-2015-00039 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Subatomic Physics Envelope - Individual
The Integrable Chromodynamic Flux Tube
可集成的色动力通量管
- 批准号:
SAPIN-2015-00039 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Subatomic Physics Envelope - Individual
Holography and Integrability in String Theory
弦理论中的全息性和可积性
- 批准号:
386260-2012 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Subatomic Physics Envelope - Individual
Holography and Integrability in String Theory
弦理论中的全息性和可积性
- 批准号:
386260-2012 - 财政年份:2012
- 资助金额:
$ 3.06万 - 项目类别:
Subatomic Physics Envelope - Individual
相似海外基金
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Fellowship
Angular Cherednik Algebras and Integrability
Angular Cherednik 代数和可积性
- 批准号:
EP/W013053/1 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Research Grant
Geometry and Integrability of Random Processes
随机过程的几何和可积性
- 批准号:
2346685 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Global behavior of discrete surfaces via integrability
通过可积性实现离散曲面的全局行为
- 批准号:
23K03091 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
problem of integrability in the context of the AdS/CFT correspondence
AdS/CFT 对应关系中的可积性问题
- 批准号:
2816508 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Studentship
Extending the geometric theory of discrete Painleve equations - singularities, entropy and integrability
扩展离散 Painleve 方程的几何理论 - 奇点、熵和可积性
- 批准号:
22KF0073 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for JSPS Fellows
symmetry and integrability of ADE matrix model probing critical phenomena of supersymmetric gauge theory by symmetry and integrability
ADE 矩阵模型的对称性和可积性 通过对称性和可积性探讨超对称规范理论的关键现象
- 批准号:
23K03394 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear systems: algebraic structures and integrability
非线性系统:代数结构和可积性
- 批准号:
EP/X018784/1 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Research Grant
Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
- 批准号:
22H01130 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




