Efficient imputation and resampling methods for analyzing complex survey data
用于分析复杂调查数据的高效插补和重采样方法
基本信息
- 批准号:227179-2010
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large scale complex surveys are routinely conducted by organizations such as Statistics Canada to gather critical information about the target population. Statistical analysis of survey data provides grounds for informed decisions on management strategies, development plans and policies that affect every aspects of our society. Survey data are also widely used by researchers to address issues in business, education, health, behaviour and other psychosocial and economical areas. Among the challenging issues related to analysis of complex survey data, missing data problems and variance estimation techniques have been two important areas for methodological research. This proposal extends methods that are used in current practice and develops new and efficient imputation methods for handling missing data and efficient resampling procedures for variance estimation. Our proposed methods build on the strength of currently used procedures, provide solutions to some of the problems and will likely change the way that public-use survey data sets are produced and how these data sets are analyzed. The proposed research topics also provide ample opportunities for graduate students to get involved and to develop ideas into their thesis research.
加拿大统计局等组织经常进行大规模的复杂调查,以收集有关目标人口的重要信息。对调查数据的统计分析为就影响我们社会各个方面的管理战略、发展计划和政策作出知情决定提供了依据。调查数据还被研究人员广泛用于解决商业、教育、卫生、行为和其他心理社会和经济领域的问题。在复杂调查数据分析的挑战性问题中,缺失数据问题和方差估计技术一直是方法学研究的两个重要领域。该建议扩展了目前实践中使用的方法,并开发了新的和有效的插补方法来处理缺失数据和有效的方差估计的恢复程序。我们提出的方法建立在目前使用的程序的力量,提供解决方案的一些问题,并可能会改变的方式,公共使用的调查数据集的生产和如何分析这些数据集。拟议的研究课题也为研究生提供了充分的机会,让他们参与并将想法发展到论文研究中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wu, Changbao其他文献
Electronic properties and 4f -> 5d transitions in Ce-doped Lu2SiO5: a theoretical investigation
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:
- 作者:
Ning, Lixin;Lin, Lihua;Li, Lanlan;Wu, Changbao;Duan, Chang-kui;Zhang, Yongfan;Seijo, Luis; - 通讯作者:
Marginal methods for correlated binary data with misclassified responses
- DOI:
10.1093/biomet/asr035 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:2.7
- 作者:
Chen, Zhijian;Yi, Grace Y.;Wu, Changbao - 通讯作者:
Wu, Changbao
Colquhounia Root Tablet Promotes Autophagy and Inhibits Apoptosis in Diabetic Nephropathy by Suppressing CD36 Expression In Vivo and In Vitro.
- DOI:
10.1155/2023/4617653 - 发表时间:
2023 - 期刊:
- 影响因子:4.3
- 作者:
Li, Han;Wang, Baiju;Wu, Changbao;Xie, Dandan;Li, Jizhen;Wang, Na;Chen, Hanwen;Liu, Lei - 通讯作者:
Liu, Lei
Calibration Weighting Methods for Complex Surveys
- DOI:
10.1111/insr.12097 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:2
- 作者:
Wu, Changbao;Lu, Wilson W. - 通讯作者:
Lu, Wilson W.
Protocol for validating an algorithm to identify neurocognitive disorders in Canadian Longitudinal Study on Aging participants: an observational study.
- DOI:
10.1136/bmjopen-2023-073027 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:2.9
- 作者:
Mayhew, Alexandra J.;Hogan, David;Raina, Parminder;Wolfson, Christina;Costa, Andrew P.;Jones, Aaron;Kirkland, Susan;O'Connell, Megan;Taler, Vanessa;Smith, Eric E.;Liu-Ambrose, Teresa;Ma, Jinhui;Thompson, Mary;Wu, Changbao;Chertkow, Howard;Griffith, Lauren E.;CLSA Memory Study Working Grp - 通讯作者:
CLSA Memory Study Working Grp
Wu, Changbao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wu, Changbao', 18)}}的其他基金
Challenges and Emerging Issues in Official Statistics and Survey Methodology
官方统计和调查方法中的挑战和新出现的问题
- 批准号:
RGPIN-2020-04345 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Challenges and Emerging Issues in Official Statistics and Survey Methodology
官方统计和调查方法中的挑战和新出现的问题
- 批准号:
RGPIN-2020-04345 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Challenges and Emerging Issues in Official Statistics and Survey Methodology
官方统计和调查方法中的挑战和新出现的问题
- 批准号:
RGPIN-2020-04345 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Efficiency, Sparsity and Validity in Analyzing Complex Survey Data
分析复杂调查数据的效率、稀疏性和有效性
- 批准号:
RGPIN-2015-05613 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Efficiency, Sparsity and Validity in Analyzing Complex Survey Data
分析复杂调查数据的效率、稀疏性和有效性
- 批准号:
RGPIN-2015-05613 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Efficiency, Sparsity and Validity in Analyzing Complex Survey Data
分析复杂调查数据的效率、稀疏性和有效性
- 批准号:
RGPIN-2015-05613 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Efficiency, Sparsity and Validity in Analyzing Complex Survey Data
分析复杂调查数据的效率、稀疏性和有效性
- 批准号:
RGPIN-2015-05613 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Efficiency, Sparsity and Validity in Analyzing Complex Survey Data
分析复杂调查数据的效率、稀疏性和有效性
- 批准号:
RGPIN-2015-05613 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Efficient imputation and resampling methods for analyzing complex survey data
用于分析复杂调查数据的高效插补和重采样方法
- 批准号:
227179-2010 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Efficient imputation and resampling methods for analyzing complex survey data
用于分析复杂调查数据的高效插补和重采样方法
- 批准号:
227179-2010 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
利用Imputation和Meta分析方法深度搜寻IgA肾病新的易感基因
- 批准号:81570599
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
数据缺失时高维数据降维分析的方法、理论与应用
- 批准号:11171331
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
Imputation法及其在MHC区域易感基因搜寻中的应用
- 批准号:31000528
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
IMR: MM-1C: Fine-grained Network Monitoring via Software Imputation
IMR:MM-1C:通过软件插补进行细粒度网络监控
- 批准号:
2319442 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Mendelian imputation for family-based GWAS and association-by-proxy in diverse ancestries
基于家庭的 GWAS 和不同祖先的代理关联的孟德尔插补
- 批准号:
10717993 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Secure Outsourcing of Genotype Imputation for Privacy-aware Genomic Analysis (RO1HE21)
用于隐私意识基因组分析的基因型插补的安全外包 (RO1HE21)
- 批准号:
10587347 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Research on imputation methods for missing values in real world data
现实数据缺失值插补方法研究
- 批准号:
23K11011 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bioinformatic investigation of previously neglected regions of the genome and their association with age-related hearing loss
对以前被忽视的基因组区域及其与年龄相关性听力损失的关联进行生物信息学研究
- 批准号:
481299 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Operating Grants
Improving the robustness of chained equation imputation by incorporating compatibility blocks
通过合并兼容性块来提高链式方程插补的鲁棒性
- 批准号:
559849-2021 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Imputation multiple pour de l'inférence sur une Anova
方差分析的多重插补
- 批准号:
574038-2022 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
University Undergraduate Student Research Awards
Time Series and Spectral Methods for Imputation, Regression, and Environmental Health
用于插补、回归和环境健康的时间序列和谱方法
- 批准号:
RGPIN-2017-04741 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Novel statistical methods for transcriptomic imputation to enhance understanding of causal mechanisms underlying human diseases
转录组插补的新统计方法可增强对人类疾病因果机制的理解
- 批准号:
MR/V020749/1 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
Variance estimation under multiple imputation for missing survey data
缺失调查数据多重插补下的方差估计
- 批准号:
574963-2022 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
University Undergraduate Student Research Awards