Efficiency, Sparsity and Validity in Analyzing Complex Survey Data
分析复杂调查数据的效率、稀疏性和有效性
基本信息
- 批准号:RGPIN-2015-05613
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large scale complex surveys play an important role in providing information for policy makers and the general public as well as many scientific areas, such as public health and social science research. The proposed research addresses three critical aspects of complex survey data analysis, namely, efficiency, sparsity and validity, through four broad research projects: (i) Efficient semiparametric fractional imputation for nonresponses and missing data; (ii) Sparse and efficient replication weights and resampling methods for variance estimation; (iii) Bayesian empirical likelihood methods for valid and efficient design-based inferences; and (iv) Efficient sampling techniques and valid inference procedures for big data problems. ***The first two projects strive to provide more attractive strategies and solutions to the two seemingly separate but entangled problems on missing data problems and variance estimation techniques, which are fundamentally important to complex survey data analysis. The third project attempts to develop a general framework and useful methodologies in Bayesian analysis for survey data with complex sampling design features involving stratification, clustering and unequal probability selection. The primary goal is to develop Bayesian analysis procedures with valid frequentist interpretation under the design-based framework. The last project tries to catch the current trend on big data problems, and our potential contribution is to adequately address issues in analyzing overly large data sets with sampling techniques originally developed for finite population problems. ***The anticipated outcomes of this research will be efficient, sparse and valid inference tools and strategies for creating public use micro survey data files and for conducting statistical analysis of complex surveys. All four broad projects outlined in the proposal will involve training of graduate students at both master's and PhD levels and of postdoctoral fellows.**
大规模复杂调查在为政策制定者和公众以及公共卫生和社会科学研究等许多科学领域提供信息方面发挥着重要作用。拟议的研究通过四个广泛的研究项目解决了复杂调查数据分析的三个关键方面,即效率、稀疏性和有效性: (i) 对无答复和缺失数据进行有效的半参数分数插补; (ii) 稀疏且高效的复制权重和方差估计的重采样方法; (iii) 用于有效且高效的基于设计的推论的贝叶斯经验似然法; (iv) 针对大数据问题的高效采样技术和有效推理程序。 ***前两个项目致力于为丢失数据问题和方差估计技术这两个看似独立但又相互纠缠的问题提供更具吸引力的策略和解决方案,这对于复杂的调查数据分析至关重要。第三个项目试图为具有复杂抽样设计特征(涉及分层、聚类和不等概率选择)的调查数据开发贝叶斯分析的通用框架和有用的方法。主要目标是在基于设计的框架下开发具有有效频率解释的贝叶斯分析程序。最后一个项目试图抓住大数据问题的当前趋势,我们的潜在贡献是利用最初为有限总体问题开发的采样技术来充分解决分析过大数据集的问题。 ***这项研究的预期成果将是高效、稀疏和有效的推理工具和策略,用于创建公众使用的微观调查数据文件和对复杂调查进行统计分析。提案中概述的所有四个主要项目都将涉及对硕士和博士级别的研究生以及博士后研究员的培训。 **
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wu, Changbao其他文献
Electronic properties and 4f -> 5d transitions in Ce-doped Lu2SiO5: a theoretical investigation
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:
- 作者:
Ning, Lixin;Lin, Lihua;Li, Lanlan;Wu, Changbao;Duan, Chang-kui;Zhang, Yongfan;Seijo, Luis; - 通讯作者:
Marginal methods for correlated binary data with misclassified responses
- DOI:
10.1093/biomet/asr035 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:2.7
- 作者:
Chen, Zhijian;Yi, Grace Y.;Wu, Changbao - 通讯作者:
Wu, Changbao
Colquhounia Root Tablet Promotes Autophagy and Inhibits Apoptosis in Diabetic Nephropathy by Suppressing CD36 Expression In Vivo and In Vitro.
- DOI:
10.1155/2023/4617653 - 发表时间:
2023 - 期刊:
- 影响因子:4.3
- 作者:
Li, Han;Wang, Baiju;Wu, Changbao;Xie, Dandan;Li, Jizhen;Wang, Na;Chen, Hanwen;Liu, Lei - 通讯作者:
Liu, Lei
Calibration Weighting Methods for Complex Surveys
- DOI:
10.1111/insr.12097 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:2
- 作者:
Wu, Changbao;Lu, Wilson W. - 通讯作者:
Lu, Wilson W.
Protocol for validating an algorithm to identify neurocognitive disorders in Canadian Longitudinal Study on Aging participants: an observational study.
- DOI:
10.1136/bmjopen-2023-073027 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:2.9
- 作者:
Mayhew, Alexandra J.;Hogan, David;Raina, Parminder;Wolfson, Christina;Costa, Andrew P.;Jones, Aaron;Kirkland, Susan;O'Connell, Megan;Taler, Vanessa;Smith, Eric E.;Liu-Ambrose, Teresa;Ma, Jinhui;Thompson, Mary;Wu, Changbao;Chertkow, Howard;Griffith, Lauren E.;CLSA Memory Study Working Grp - 通讯作者:
CLSA Memory Study Working Grp
Wu, Changbao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wu, Changbao', 18)}}的其他基金
Challenges and Emerging Issues in Official Statistics and Survey Methodology
官方统计和调查方法中的挑战和新出现的问题
- 批准号:
RGPIN-2020-04345 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Challenges and Emerging Issues in Official Statistics and Survey Methodology
官方统计和调查方法中的挑战和新出现的问题
- 批准号:
RGPIN-2020-04345 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Challenges and Emerging Issues in Official Statistics and Survey Methodology
官方统计和调查方法中的挑战和新出现的问题
- 批准号:
RGPIN-2020-04345 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Efficiency, Sparsity and Validity in Analyzing Complex Survey Data
分析复杂调查数据的效率、稀疏性和有效性
- 批准号:
RGPIN-2015-05613 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Efficiency, Sparsity and Validity in Analyzing Complex Survey Data
分析复杂调查数据的效率、稀疏性和有效性
- 批准号:
RGPIN-2015-05613 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Efficiency, Sparsity and Validity in Analyzing Complex Survey Data
分析复杂调查数据的效率、稀疏性和有效性
- 批准号:
RGPIN-2015-05613 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Efficiency, Sparsity and Validity in Analyzing Complex Survey Data
分析复杂调查数据的效率、稀疏性和有效性
- 批准号:
RGPIN-2015-05613 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Efficient imputation and resampling methods for analyzing complex survey data
用于分析复杂调查数据的高效插补和重采样方法
- 批准号:
227179-2010 - 财政年份:2014
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Efficient imputation and resampling methods for analyzing complex survey data
用于分析复杂调查数据的高效插补和重采样方法
- 批准号:
227179-2010 - 财政年份:2013
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Efficient imputation and resampling methods for analyzing complex survey data
用于分析复杂调查数据的高效插补和重采样方法
- 批准号:
227179-2010 - 财政年份:2012
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
OAC Core: Improving Data Integrity for HPC Datasets using Sparsity Profile
OAC 核心:使用稀疏性配置文件提高 HPC 数据集的数据完整性
- 批准号:
2312982 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
- 批准号:
2310974 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
SHF: Small: Domain-Specific FPGAs to Accelerate Unrolled DNNs with Fine-Grained Unstructured Sparsity and Mixed Precision
SHF:小型:特定领域 FPGA 加速具有细粒度非结构化稀疏性和混合精度的展开 DNN
- 批准号:
2303626 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Topic-Oriented Public Sentiment Assessment via Social Media under Information Uncertainty and Sparsity
信息不确定性和稀疏性下社交媒体主题舆情评估
- 批准号:
23K16954 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Robustness, Active Learning, Sparsity, and Fairness in Classification
职业:分类中的鲁棒性、主动学习、稀疏性和公平性
- 批准号:
2239376 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
CRII: CNS: Exploring Data and Model Sparsity in Deep Learning Systems using Graphs
CRII:CNS:使用图探索深度学习系统中的数据和模型稀疏性
- 批准号:
2245849 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
CMOS+X: Retinomorphic Infrared Imager with Sparsity-adaptive Machine-Learning Accelerator
CMOS X:具有稀疏自适应机器学习加速器的视网膜成像红外成像仪
- 批准号:
2318990 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
- 批准号:
2310973 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Sparsity-Based Autonomous Adaptability in Circuit and Systems Utilizing Compressed Sensing
利用压缩感知的电路和系统中基于稀疏性的自主适应性
- 批准号:
23K18463 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Frames as dictionaries in inverse problems: Recovery guarantees for structured sparsity, unstructured environments, and symmetry-group identification
逆问题中的框架作为字典:结构化稀疏性、非结构化环境和对称群识别的恢复保证
- 批准号:
2308152 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant














{{item.name}}会员




