Optimization algorithms: worst-case behaviours and related conjectures
优化算法:最坏情况行为和相关猜想
基本信息
- 批准号:311969-2010
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rational decision-making through quantitative modelling and analysis is the guiding principle behind operations research, a field with several far-reaching applications in research and industry. Finding optimal allocations of resources, scheduling tasks, and designing prototypes are a few of the areas operations research is concerned with. In many cases, these problems can be formulated or approximated as linear optimization problems, which involve maximizing or minimizing a linear function over a domain defined by a set of linear inequalities. The simplex and primal-dual interior point methods are currently the most computationally successful algorithms for linear optimization. While the simplex methods follow an edge path, the interior point methods follow the central path. Within this framework, the curvature of a polytope, defined as the largest possible total curvature of the associated central path, can be regarded as the continuous analogue of its diameter. The algorithmic issues are closely related to the combinatorial and geometric structure of the feasible region. My research proposal focuses on the interconnections between these computationally successful algorithms for linear optimization, and the geometric and combinatorial structure of the input. The methodology is based on a combination of new polyhedral constructions with enhanced combinatorial and geometric properties and a tighter analysis of the currently established bounds.
通过定量建模和分析进行理性决策是运筹学背后的指导原则,运筹学在研究和工业中有着许多深远的应用。寻找资源的最佳分配,调度任务和设计原型是运筹学所关注的几个领域。在许多情况下,这些问题可以被表述或近似为线性优化问题,它涉及在由一组线性不等式定义的域上最大化或最小化线性函数。单纯形法和原对偶内点法是目前计算上最成功的线性优化算法。单纯形法遵循边缘路径,而内点法遵循中心路径。在这个框架中,多面体的曲率被定义为相关中心路径的最大可能总曲率,可以被视为其直径的连续模拟。算法问题与可行域的组合结构和几何结构密切相关。我的研究计划侧重于这些计算上成功的线性优化算法与输入的几何和组合结构之间的相互联系。该方法基于新的多面体结构的组合,具有增强的组合和几何性质,并对当前建立的边界进行更严格的分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deza, Antoine其他文献
OPTIMIZATION OVER DEGREE SEQUENCES
- DOI:
10.1137/17m1134482 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:0.8
- 作者:
Deza, Antoine;Levin, Asaf;Onn, Shmuel - 通讯作者:
Onn, Shmuel
Deza, Antoine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deza, Antoine', 18)}}的其他基金
Linear Optimization: Theory and Applications
线性优化:理论与应用
- 批准号:
RGPIN-2020-06846 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Linear Optimization: Theory and Applications
线性优化:理论与应用
- 批准号:
RGPIN-2020-06846 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Linear Optimization: Theory and Applications
线性优化:理论与应用
- 批准号:
RGPIN-2020-06846 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Computational, Combinatorial, and Geometric Aspects of Linear Optimization
线性优化的计算、组合和几何方面
- 批准号:
RGPIN-2015-06163 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Computational, Combinatorial, and Geometric Aspects of Linear Optimization
线性优化的计算、组合和几何方面
- 批准号:
RGPIN-2015-06163 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Computational, Combinatorial, and Geometric Aspects of Linear Optimization
线性优化的计算、组合和几何方面
- 批准号:
RGPIN-2015-06163 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Optimization algorithms with public health applications
公共卫生应用的优化算法
- 批准号:
499282-2016 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
Computational, Combinatorial, and Geometric Aspects of Linear Optimization
线性优化的计算、组合和几何方面
- 批准号:
RGPIN-2015-06163 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Computational, Combinatorial, and Geometric Aspects of Linear Optimization
线性优化的计算、组合和几何方面
- 批准号:
RGPIN-2015-06163 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: AF: Models and Algorithms for Beyond Worst-case Analysis of Learning
职业:AF:超越最坏情况学习分析的模型和算法
- 批准号:
2047288 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Beyond Worst-Case Optimal Join Algorithms via Analysis of Boolean Functions
通过布尔函数分析超越最坏情况的最佳连接算法
- 批准号:
528650-2018 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
CAREER: Beyond Worst-Case Analysis: New Approaches in Approximation Algorithms and Machine Learning
职业:超越最坏情况分析:近似算法和机器学习的新方法
- 批准号:
1652491 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
AF:Small:Beyond Worst Case Running time: Algorithms for Routing, Scheduling and Matching
AF:小:超越最坏情况运行时间:路由、调度和匹配算法
- 批准号:
1714818 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Development of online algorithms with theoretical guarantees for both average and worst case performance
开发具有平均和最坏情况性能理论保证的在线算法
- 批准号:
16K16005 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
AitF: FULL: From Worst-Case to Realistic-Case Analysis for Large Scale Machine Learning Algorithms
AitF:完整:大规模机器学习算法从最坏情况到现实情况分析
- 批准号:
1535967 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Beyond Worst-Case Analysis of Online Algorithms
超越在线算法的最坏情况分析
- 批准号:
465622-2014 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
University Undergraduate Student Research Awards
Optimization algorithms: worst-case behaviours and related conjectures
优化算法:最坏情况行为和相关猜想
- 批准号:
311969-2010 - 财政年份:2013
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Optimization algorithms: worst-case behaviours and related conjectures
优化算法:最坏情况行为和相关猜想
- 批准号:
311969-2010 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Optimization algorithms: worst-case behaviours and related conjectures
优化算法:最坏情况行为和相关猜想
- 批准号:
311969-2010 - 财政年份:2011
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual