Wireless inertial sensor network for ubiquitous human motion capture

用于无处不在的人体动作捕捉的无线惯性传感器网络

基本信息

  • 批准号:
    430592-2012
  • 负责人:
  • 金额:
    $ 10.71万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Strategic Projects - Group
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Motion capture refers to the process of recording movement of one or more persons or objects. It serves as an essential technology to many industries, including entertainment (gaming and filmmaking), movement science (human factors and kinetics), virtual reality (training and simulations), and health (diagnostics and monitoring). In gaming and filmmaking, it is used to record actions of human actors or athletes, and using that information to animate digital character models in 3D computer animation. The main goal of this Strategic Project Grants (SPG) proposal is to develop an innovative wireless, real-time 3D motion tracking system for true ambulatory applications in gaming and filmmaking. A key technological element in this endeavor is the advent of the state-of-the-art MEMS-based tri-axial inertial sensors that can be integrated with emerging short-range wireless technologies to implement a ubiquitous intra- and multi-subject motion tracking system that is capable of on-field measurements. In comparison to traditional motion capture (MoCap) systems such as the 'gold-standard' optical systems, the proposed wireless inertial MoCap ("wiMoCap") system has the potential to be truly 'ambulatory' and unlimited in range, as long as the system's positional accuracy and battery life allows. Therefore, the development of a low-power and drift-free wiMoCap system using novel sensor fusion algorithms, low-power wireless sensor networks (WSN) and distributed data compression is the main focus of this project proposal. Inertial sensor-based motion capture is an emerging and fastest growing MoCap technology. The proposed multidisciplinary project is a collaborative venture between Drs. Park (PI), Lee and Bajic of the Simon Fraser University (SFU) and Electronic Arts ("EA"), one of the largest video game publishers/developers in the world. EA Canada, EA Capture (Burnaby, BC) in particular, will make significant in-kind contributions to the project as the development of the proposed wiMoCap technology is intimately in-line with its business and R&D interests. The proposed technology offers various technical MoCap innovations that can revolutionize the gaming and filming industries within the next five years.
运动捕捉是指记录一个或多个人或物体的运动的过程。它是许多行业的基本技术,包括娱乐(游戏和电影制作)、运动科学(人的因素和动力学)、虚拟现实(培训和模拟)以及健康(诊断和监测)。在游戏和电影制作中,它被用来记录人类演员或运动员的动作,并使用这些信息在3D计算机动画中制作数字角色模型的动画。这项战略项目拨款(SPG)提案的主要目标是开发一种创新的无线实时3D运动跟踪系统,用于游戏和电影制作中真正的移动应用。这一努力的一个关键技术要素是最先进的基于MEMS的三轴惯性传感器的出现,该传感器可以与新兴的短程无线技术相集成,实现能够现场测量的无处不在的内部和多对象运动跟踪系统。与‘黄金标准’光学系统等传统运动捕捉(MOCAP)系统相比,只要系统的位置精度和电池寿命允许,建议的无线惯性MOCAP(“wiMoCap”)系统具有真正的“可移动”和无限范围的潜力。因此,利用新颖的传感器融合算法、低功耗无线传感器网络(WSN)和分布式数据压缩技术开发低功耗、无漂移的wiMoCap系统是本项目提案的主要重点。基于惯性传感器的运动捕捉是一种新兴的、发展最快的运动捕捉技术。拟议的多学科项目是西蒙·弗雷泽大学(SFU)的Park博士、Lee博士和Bajic博士与世界上最大的视频游戏发行商/开发商之一的电子艺界(EA)合作的项目。EA Canada,特别是EA Capture(卑诗省伯纳比)将为该项目做出重大的实物贡献,因为拟议的wiMoCap技术的开发与其业务和研发利益密切相关。这项拟议的技术提供了各种技术创新,可以在未来五年内给游戏和电影行业带来革命性的变化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Park, Edward其他文献

Postlingually Deaf Adults of All Ages Derive Equal Benefits from Unilateral Multichannel Cochlear Implant
Salicylate prevents hepatic insulin resistance caused by short-term elevation of free fatty acids in vivo
  • DOI:
    10.1677/joe-07-0005
  • 发表时间:
    2007-11-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Park, Edward;Wong, Victor;Giacca, Adria
  • 通讯作者:
    Giacca, Adria
Oral Cyclophosphamide for Lupus Glomerulonephritis: An Underused Therapeutic Option
Modeling suspended sediment distribution patterns of the Amazon River using MODIS data
  • DOI:
    10.1016/j.rse.2014.03.013
  • 发表时间:
    2014-05-05
  • 期刊:
  • 影响因子:
    13.5
  • 作者:
    Park, Edward;Latrubesse, Edgardo M.
  • 通讯作者:
    Latrubesse, Edgardo M.
Increased burned area in the Pantanal over the past two decades
  • DOI:
    10.1016/j.scitotenv.2022.155386
  • 发表时间:
    2022-05-02
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Correa, Danielle Blazys;Alcantara, Enner;Park, Edward
  • 通讯作者:
    Park, Edward

Park, Edward的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Park, Edward', 18)}}的其他基金

Sensor Fusion for Health-tracking Wearable Devices and Internet of Things
用于健康跟踪可穿戴设备和物联网的传感器融合
  • 批准号:
    RGPIN-2017-06558
  • 财政年份:
    2022
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Discovery Grants Program - Individual
Sensor Fusion for Health-tracking Wearable Devices and Internet of Things
用于健康跟踪可穿戴设备和物联网的传感器融合
  • 批准号:
    RGPIN-2017-06558
  • 财政年份:
    2021
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Discovery Grants Program - Individual
Sensor Fusion for Health-tracking Wearable Devices and Internet of Things
用于健康跟踪可穿戴设备和物联网的传感器融合
  • 批准号:
    RGPIN-2017-06558
  • 财政年份:
    2020
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Discovery Grants Program - Individual
Novel wearable technology for remote and continuous COVID-19 patient monitoring at home
新型可穿戴技术,用于在家远程连续监测 COVID-19 患者
  • 批准号:
    551388-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Alliance Grants
Sensor Fusion for Health-tracking Wearable Devices and Internet of Things
用于健康跟踪可穿戴设备和物联网的传感器融合
  • 批准号:
    RGPIN-2017-06558
  • 财政年份:
    2019
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Discovery Grants Program - Individual
Sensor Fusion for Health-tracking Wearable Devices and Internet of Things
用于健康跟踪可穿戴设备和物联网的传感器融合
  • 批准号:
    RGPIN-2017-06558
  • 财政年份:
    2018
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a novel automated micropropagation system for plant tissue culture
开发用于植物组织培养的新型自动化微繁殖系统
  • 批准号:
    474550-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Collaborative Research and Development Grants
Sensor Fusion for Health-tracking Wearable Devices and Internet of Things
用于健康跟踪可穿戴设备和物联网的传感器融合
  • 批准号:
    RGPIN-2017-06558
  • 财政年份:
    2017
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Discovery Grants Program - Individual
Development of an indoor real-time location system for eldercare
室内养老实时定位系统的开发
  • 批准号:
    503158-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Engage Grants Program
Development of automated single cell manipulation and analysis techniques for rare cell applications
开发用于稀有细胞应用的自动化单细胞操作和分析技术
  • 批准号:
    298219-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Estimation of Driver States Using a Single Inertial Sensor
使用单个惯性传感器估计驾驶员状态
  • 批准号:
    23K03743
  • 财政年份:
    2023
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Disrupting the UK inertial sensor supply chain to increase resilience and safety for self-driving vehicles
颠覆英国惯性传感器供应链,提高自动驾驶车辆的弹性和安全性
  • 批准号:
    10065170
  • 财政年份:
    2023
  • 资助金额:
    $ 10.71万
  • 项目类别:
    BEIS-Funded Programmes
Levitated Optomechanical inertial and acceleration sensor platform
悬浮光机械惯性和加速度传感器平台
  • 批准号:
    2749914
  • 财政年份:
    2022
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Studentship
High-BIAS2: High-Bandwidth Inertial Atom Source & Sensor
High-BIAS2:高带宽惯性原子源
  • 批准号:
    41095
  • 财政年份:
    2020
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Collaborative R&D
Inertial Sensor Based Machine Learning Algorithm for the Detection and Quantification of High Knee Flexion Exposures in Childcare Workers
基于惯性传感器的机器学习算法,用于检测和量化儿童保育人员的高膝关节弯曲暴露
  • 批准号:
    518679-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Prevention of occurrence of baseball elbow injury by newly developed motion analysis using inertial sensor
通过新开发的惯性传感器运动分析来预防棒球肘损伤的发生
  • 批准号:
    19K11506
  • 财政年份:
    2019
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inertial-based indoor backtracking and wayfinding aid for blind travelers
为盲人旅行者提供基于惯性的室内回溯和寻路辅助
  • 批准号:
    10164793
  • 财政年份:
    2018
  • 资助金额:
    $ 10.71万
  • 项目类别:
Inertial Sensor Based Machine Learning Algorithm for the Detection and Quantification of High Knee Flexion Exposures in Childcare Workers
基于惯性传感器的机器学习算法,用于检测和量化儿童保育人员的高膝关节弯曲暴露
  • 批准号:
    518679-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A method to evaluate swimming performance based on deep learning and a single inertial sensor
基于深度学习和单惯性传感器的游泳成绩评估方法
  • 批准号:
    17K13179
  • 财政年份:
    2017
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Autonomous Robotic Navigation in Rugged Outdoor Environments Using a Multi-Sensor Inertial Navigation System
使用多传感器惯性导航系统在恶劣的户外环境中进行自主机器人导航
  • 批准号:
    511013-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 10.71万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了