Physics of periodic and non-periodic nanostructured chromogenic thin films and devices
周期性和非周期性纳米结构显色薄膜和器件的物理学
基本信息
- 批准号:RGPIN-2014-06546
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal objective of the proposed research program is to study the correlation between the nanostructure and the chromogenic properties of transition metal oxide (TMO) thin films. The in-depth understanding of the physics and chemistry related to the chromogenic properties of these nanostructured TMOs is expected to lead us to the design and realization of better performing interactive devices for various applications. The area of low dimension materials or the so called nanomaterials has become extremely important in recent years from the scientific and technological point of view. The optical, electrical and other properties of the hitherto very well-known materials can be drastically altered and/or enhanced by reducing their size in one or two or all three dimensions. This reduction in dimensions to nanometric scales induces a change in their 1) electrical behavior due to the immense grain boundary effects induced at the surfaces, 2) optical behavior due to the change in the optical constants and the porosity induced in the films and 3) chemical behavior due to the enormous surface effect created around the small amount of material (enormous surface to volume ratio). All these changes lead to the formation of a “new” or “advanced” mesoscopic state of materials. Some mesoscopic materials have been found to exhibit properties that do not exist in the bulk or natural form of these materials. Hence, a controlled induction of novel properties in hitherto well-known materials through their nanostructuring has become an important field in materials research. My aim here is to apply the nanostructuring approach to transition metal oxide based chromogenic materials and devices. Transition metal oxides (TMO) are known for their ability to exist in their various oxidation states. Some of these TMOs show drastically different optical and electrical properties between these different states. Hence, similar to the semiconductors, the TMOs can be switched reversibly between these metastable states by applying small activation energies provided in the form of either a small electric field or light or heat. They can be reversibly switched from a transparent to an opaque state or from a non-conducting to a conducting state through the action of these external forces. Thus the field of TMO based chromogenics, i.e. the reversible switching of TMOs through the action of an electric field (electrochromics) or heat (thermochromics) or light (photochromics) has attracted the attention of a lot of researchers in recent years. The growing importance of this field stems from two perspectives: building an understanding of the rich physics and chemistry underlying these reversible changes as well as the application of these interactive changes. My previous work in this direction has shown that the chromogenic performance of the TMOs depends very sensitively on the film nanostructure. By carefully controlling the nanostructure, one can effectively tailor the externally inducible reversible change in the optical and electrical properties of these materials. Further, by inducing a periodic nanostructure on optical wavelengths scale, various reversible photonic effects can be implanted. Through a patented work on such photonic devices, a new approach to manipulating light propagation has been demonstrated. I intend to continue my research in this area. More specifically, I would like to apply and explore the virtues of periodic and non-periodic nanostructuring to chromogenic materials.This work will not only lead to the in-depth understanding of the physics of these materials but also to the creation of new materials and devices for application in photonics, optics, communication and energy management & conversion
本研究计划的主要目的是研究过渡金属氧化物(TMO)薄膜的纳米结构与显色性能之间的关系。深入了解与这些纳米结构TMOs显色特性相关的物理和化学,有望引导我们设计和实现性能更好的各种应用的交互器件。近年来,从科学技术的角度来看,低维材料或所谓的纳米材料领域变得极其重要。通过在一个或两个或所有三个维度上减小材料的尺寸,可以大大改变和/或增强迄今为止非常知名的材料的光学、电学和其他特性。将尺寸减小到纳米尺度会导致以下方面的变化:1)由于表面产生巨大的晶界效应而导致的电学行为;2)由于光学常数和薄膜中孔隙率的变化而导致的光学行为;3)由于少量材料(巨大的表面体积比)周围产生巨大的表面效应而导致的化学行为。所有这些变化导致材料的“新”或“高级”介观状态的形成。一些介观材料被发现表现出在这些材料的体积或自然形态中不存在的特性。因此,通过纳米结构控制诱导已知材料的新特性已成为材料研究的一个重要领域。我的目标是将纳米结构方法应用于过渡金属氧化物基显色材料和器件。过渡金属氧化物(TMO)以其以各种氧化态存在的能力而闻名。其中一些TMOs在这些不同的状态之间表现出截然不同的光学和电学性质。因此,与半导体类似,TMOs可以通过施加以小电场或光或热形式提供的小活化能在这些亚稳态之间可逆地切换。通过这些外力的作用,它们可以从透明状态可逆地转变为不透明状态,或者从不导电状态可逆地转变为导电状态。因此,基于TMO的显色学领域,即通过电场(电致变色)或热(热致变色)或光(光致变色)的作用实现TMO的可逆开关,近年来引起了许多研究者的关注。这一领域日益增长的重要性源于两个方面:建立对这些可逆变化背后丰富的物理和化学的理解,以及这些相互作用变化的应用。我之前在这个方向上的工作表明,TMOs的显色性能非常敏感地取决于薄膜纳米结构。通过仔细控制纳米结构,可以有效地调整这些材料的光学和电学性质的外部诱导可逆变化。此外,通过在光学波长尺度上诱导周期性纳米结构,可以植入各种可逆光子效应。通过对这种光子器件的专利工作,证明了一种操纵光传播的新方法。我打算继续在这方面的研究。更具体地说,我想应用和探索周期性和非周期性纳米结构在显色材料中的优点。这项工作不仅将导致对这些材料的物理特性的深入理解,而且还将创造用于光子学,光学,通信和能源管理与转换的新材料和设备
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashrit, Pandurang其他文献
Ashrit, Pandurang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashrit, Pandurang', 18)}}的其他基金
Periodic and non-periodic nanostructured chromogenic thin films and devices
周期性和非周期性纳米结构显色薄膜和器件
- 批准号:
RGPIN-2019-05741 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Periodic and non-periodic nanostructured chromogenic thin films and devices
周期性和非周期性纳米结构显色薄膜和器件
- 批准号:
RGPIN-2019-05741 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Periodic and non-periodic nanostructured chromogenic thin films and devices
周期性和非周期性纳米结构显色薄膜和器件
- 批准号:
RGPIN-2019-05741 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Periodic and non-periodic nanostructured chromogenic thin films and devices
周期性和非周期性纳米结构显色薄膜和器件
- 批准号:
RGPIN-2019-05741 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Physics of periodic and non-periodic nanostructured chromogenic thin films and devices
周期性和非周期性纳米结构显色薄膜和器件的物理学
- 批准号:
RGPIN-2014-06546 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Physics of periodic and non-periodic nanostructured chromogenic thin films and devices
周期性和非周期性纳米结构显色薄膜和器件的物理学
- 批准号:
RGPIN-2014-06546 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Physics of periodic and non-periodic nanostructured chromogenic thin films and devices
周期性和非周期性纳米结构显色薄膜和器件的物理学
- 批准号:
RGPIN-2014-06546 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Physics of periodic and non-periodic nanostructured chromogenic thin films and devices
周期性和非周期性纳米结构显色薄膜和器件的物理学
- 批准号:
RGPIN-2014-06546 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Thin film filters for laser safety in aviation
用于航空激光安全的薄膜滤波器
- 批准号:
437723-2012 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Collaborative Research and Development Grants
Thin film filters for laser safety in aviation
用于航空激光安全的薄膜滤波器
- 批准号:
437723-2012 - 财政年份:2013
- 资助金额:
$ 3.06万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
无穷维哈密顿系统的KAM理论
- 批准号:10771098
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:面上项目
N-体问题的中心构型及动力系统的分支理论
- 批准号:10601071
- 批准年份:2006
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Pitch Perfect - tuning low-order aerodynamic models for non-periodic flows
Pitch Perfect - 调整非周期流动的低阶空气动力学模型
- 批准号:
2889832 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Studentship
Ultrasound directed self-assembly of non-periodic patterns of particles
超声引导非周期粒子自组装
- 批准号:
2246277 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Periodic and non-periodic nanostructured chromogenic thin films and devices
周期性和非周期性纳米结构显色薄膜和器件
- 批准号:
RGPIN-2019-05741 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Qualitative and quantitative analysis of non-periodic space-time homogenization problems for nonlinear diffusion equations
非线性扩散方程非周期时空均匀化问题的定性和定量分析
- 批准号:
22K20331 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Infants' perception of periodic and non-periodic audiovisual sequences
婴儿对周期性和非周期性视听序列的感知
- 批准号:
572674-2022 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Non-Hermitian physics of spacetime-periodic soft matter
职业:时空周期软物质的非厄米物理学
- 批准号:
2145766 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
Orbit Design and Control for Non-Heliocentric Small-Body Missions
非日心小天体任务的轨道设计与控制
- 批准号:
22K14424 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Device for the measurement of non-periodic and non-linear structural vibrations
用于测量非周期和非线性结构振动的装置
- 批准号:
495957501 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Major Research Instrumentation
Development of low-temperature high-activity nanocatalyst with periodic aggregation using a non-equilibrium process
利用非平衡过程开发周期性聚集的低温高活性纳米催化剂
- 批准号:
21K04763 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Periodic and non-periodic nanostructured chromogenic thin films and devices
周期性和非周期性纳米结构显色薄膜和器件
- 批准号:
RGPIN-2019-05741 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual