Analytic Continuation of p-adic automorphic forms and applications to the Langlands program
p 进自守形式的解析延拓及其在朗兰兹纲领中的应用
基本信息
- 批准号:RGPIN-2014-06640
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching aim of this research proposal is to use methods of p-adic analysis and p-adic geometry to make important advances in the p-adic Langlands Program. Much of our work will be devoted to making bridges between p-adic and classical Langlands programs, enabling us to make important progress in the classical Langlands program using p-adic analytic methods. The methodology is largely through analytic and algebraic geometry and a main underlying technique will be that of p-adic analytic continuation of automorphic forms. The technique of p-adic analytic continuation of automorphic forms first emerged in the groundbreaking work of Buzzard-Taylor. After Buzzard-Taylor's work, we invented a method for proving classicality criteria using p-adic analytic continuation which established analytic continuation as an indispensable tool in the theory of p-adic automorphic forms. Our method, though our work and others', has produced many classicality criteria, some of which had been missing from the literature for too long, despite the availability of other aspects of the theory. One of the main long term goals of our proposal is to prove classicality criteria in the many cases that remain open despite recent flurry of progress. In fact, one strand of research in our proposal is devoted to the study of various analytic continuation techniques and direct applications. Under this umbrella, another long term objective is to study domains of automatic analytic continuation for p-adic automorphic forms, a notion that has played a crucial role in our recent proof of the Artin conjecture over certain totally real fields. Under this strand of research, a major objective is the study of directional classicality and integrability introduced by Breuil which have applications to the ongoing effort towards a p-adic local Langlands correspondence beyond the case of GL_2(Q_p). Another strand of research in our proposal is inspired by our proof of the Artin conjecture. In 1999, Buzzard and Taylor proved modularity of Galois representations in weight one using p-adic modular forms. Their work led to a proof of many cases of the classical Artin conjecture. After more than 15 years of resistance, this work has been recently generalized by us to the case of totally real fields. Our work and its subsequent generalizations by Pilloni, Sasaki, Stroh, and Tian have almost settled the Artin conjecture over totally real fields. Our long term objective here is to use our knowledge of p-adic automorphic forms and their analytic continuation to prove automorphy of Galois representation in low weights. This encompasses a vast possibility of research generalizing our work on the Artin conjecture over totally real fields. We intend to focus our attention to the case of partial weight one Hilbert modular forms. We also plan to study a mod-p version of this phenomenon which would provide many remaining cases of the refined conjecture of Serre over totally real fields. An essential feature of our work will be to view p-adic automorphic forms as sections of vector bundles over Shimura varieties: this avails us of powerful techniques in algebraic and analytic geometry. For example, Buzzard-Taylor's approach and our generalization of it are feasible only through this geometric interpretation. A major strand of research in our proposal is, hence, devoted to the study of mod-p and p-adic Geometry of Shimura varieties. We plan to study stratifications on the mod-p Shimura varieties of interest from angles that are guided by our study of p-adic analytic continuation of p-adic automorphic forms. These results will be then used to study the p-adic geometry of Shimura varieties and the p-adic dynamics of the U_p operators on them.
本研究计划的总体目标是利用p进分析和p进几何方法在p进朗兰兹程序中取得重要进展。我们的大部分工作将致力于在p进和经典朗兰兹规划之间建立桥梁,使我们能够利用p进解析方法在经典朗兰兹规划中取得重要进展。方法主要是通过解析几何和代数几何,一个主要的潜在技术将是自同构形式的p进解析延拓。自同构形式的p进解析延拓技术最早出现在布扎德-泰勒的开创性工作中。继Buzzard-Taylor的工作之后,我们发明了一种用p进解析延拓证明经典判据的方法,使解析延拓成为p进自同构形式理论中不可或缺的工具。我们的方法,尽管我们和其他人的工作,已经产生了许多经典标准,其中一些已经从文献中缺失了太长时间,尽管理论的其他方面的可用性。我们提案的主要长期目标之一是在许多情况下证明古典标准,尽管最近取得了一系列进展,但仍然开放。事实上,我们提案中的一个研究方向是研究各种分析延拓技术及其直接应用。在这个保护伞下,另一个长期目标是研究p进自同构形式的自动解析延拓域,这个概念在我们最近对某些全实域的Artin猜想的证明中起了至关重要的作用。在这方面的研究中,一个主要的目标是研究由Breuil引入的定向经典性和可积性,它们在GL_2(Q_p)以外的p进局部朗兰兹对应的持续努力中具有应用。我们提案中的另一项研究受到我们对阿廷猜想的证明的启发。1999年,Buzzard和Taylor用p进模形式证明了权值为1的伽罗瓦表示的模性。他们的工作证明了经典的马丁猜想的许多情况。经过超过15年的抵制,这项工作最近被我们推广到完全真实的领域。我们的工作以及随后由Pilloni、Sasaki、Stroh和Tian进行的推广几乎解决了完全真实领域的Artin猜想。我们的长期目标是利用我们关于p进自同构形式及其解析延拓的知识来证明低权重伽罗瓦表示的自同构。这包含了在完全真实的领域中推广我们在Artin猜想上的工作的巨大可能性。我们打算把注意力集中在偏权一希尔伯特模形式的情况上。我们还计划研究这种现象的mod-p版本,这将提供许多在全实场上改进Serre猜想的剩余案例。我们工作的一个基本特征是将p进自同构形式视为志村变异上向量束的部分:这为我们提供了代数和解析几何中的强大技术。例如,Buzzard-Taylor的方法和我们对它的推广只有通过这种几何解释才是可行的。因此,在我们的建议中,一个主要的研究方向是致力于志村变量的模p和p进几何的研究。我们计划从我们对p进自同构形式的p进解析延拓的研究指导的角度来研究modp Shimura感兴趣的变异的分层。这些结果将用于研究Shimura变元的p进几何和它们上的U_p算子的p进动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LKassaei, Payman其他文献
LKassaei, Payman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LKassaei, Payman', 18)}}的其他基金
Analytic Continuation of p-adic automorphic forms and applications to the Langlands program
p 进自守形式的解析延拓及其在朗兰兹纲领中的应用
- 批准号:
RGPIN-2014-06640 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
- 批准号:
2350351 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Refresh, Continuation, and Science Exploitation of the Birmingham Solar-Oscillations Network (BiSON)
伯明翰太阳振荡网络(BiSON)的更新、延续和科学开发
- 批准号:
ST/Z000025/1 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
Superconductor-(Metal)-Insulator Transitions: Understanding the Emergence of Metallic States, A Continuation Proposal
超导体-(金属)-绝缘体转变:了解金属态的出现,延续提案
- 批准号:
2307132 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Development of support measures and clarification of promotion factors for the expansion and continuation of intergenerational programs
制定支持措施并明确促进因素,以扩大和延续代际计划
- 批准号:
23H00906 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
- 批准号:
10829529 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Continuation of the NuMoM2b Heart Health Study
NuMoM2b 心脏健康研究的延续
- 批准号:
10905863 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Arizona Department of Health Services, MFRPS Maintenance and continuation of the State Manufactured Food Regulatory Progam
亚利桑那州卫生服务部、MFRPS 维护和延续州制造食品监管计划
- 批准号:
10829093 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Nonlinear Ground Vibration Testing using Control-based Continuation
使用基于控制的延续进行非线性地面振动测试
- 批准号:
EP/W032236/1 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
Model Reduction for Control-based Continuation of Complex Nonlinear Structures
复杂非线性结构基于控制的连续性的模型简化
- 批准号:
EP/X026027/1 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Fellowship
Infrastructure for Digital Arts and Humanities: a National Repository for Literature and Linguistics Continuation 2023-2025
数字艺术和人文基础设施:2023-2025 年国家文学和语言学继续知识库
- 批准号:
AH/Y007689/1 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant