Hodge Realizations of Motivic Cohomology
动机上同调的 Hodge 实现
基本信息
- 批准号:121004-2013
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
***Hodge Realizations of Motivic Cohomology***
Let us imagine for the moment that you are on a star trek expedition
to discover civilizations on different planets in our solar system.
You first encounter a civilization on one planet that has ``earthly''
overtones, and as your subsequent encounters of civilizations on
other planets indicate, there is a sort of profound
``deja vu'' feeling about your discoveries. One might at this point,
imagine that all such planetary civilizations are mere ``incarnations''
of an ``advanced universal civilization of the solar system'', which you can
neither see nor touch, but you instinctively know exists. In mathematics,
this is the current world of algebraic cycles and motivic cohomology.
The analog of the advanced universal civilization of the solar system is
precisely motivic cohomology (a universal cohomology theory), which is a reflection
of what all cohomology theories (analogous to planetary civilizations) have
in common. All known candidates of motivic cohomology use the datum of
algebraic cycles as building blocks. A regulator (or realization) is analogous
to one particular planetary civilization. In more precise terms,
a realization is a map from motivic cohomology to a more ``earthly'' cohomology theory.
Hodge realizations are simply a particular class of realizations.
Our only way to understand the complexity of motivic cohomology is via its realizations.
* 动机上同调的Hodge实现 *
让我们暂时想象一下,你正在进行一次星星旅行探险
去发现太阳系不同行星上的文明
你首先在一个星球上遇到一个文明,
暗示,以及你随后遇到的文明,
其他行星表明,有一种深刻的
“似曾相识”的感觉。在这一点上,
想象一下,所有这些行星文明仅仅是“化身”
一个“太阳系的先进宇宙文明”,你可以
既看不见也摸不着,但你本能地知道存在。在数学中,
这就是当前的代数循环和动机上同调世界。
太阳系先进的宇宙文明的类比是
动机上同调(一种普遍的上同调理论),这是一个反射
所有的上同调理论(类似于行星文明)
共同点所有已知的动机上同调的候选者都使用以下数据:
代数循环作为积木。调节器(或实现)是类似的
一个特定的行星文明更准确地说,
一种实现是从动机上同调到更“通俗”的上同调理论的映射。
霍奇实现只是实现的一个特殊类别。
我们理解动机上同调复杂性的唯一途径是通过它的实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lewis, James其他文献
Protocol-driven primary care and community linkage to reduce all-cause mortality in rural Zambia: a stepped-wedge cluster randomized trial.
协议驱动的初级保健和社区联系,以降低赞比亚农村地区的全因死亡率:一项阶梯楔形整群随机试验。
- DOI:
10.3389/fpubh.2023.1214066 - 发表时间:
2023 - 期刊:
- 影响因子:5.2
- 作者:
Mutale, Wilbroad;Ayles, Helen;Lewis, James;Bosompraph, Samuel;Chilengi, Roma;Tembo, Margaret M.;Sharp, Ab;Chintu, Namwinga;Stringer, Jeffrey - 通讯作者:
Stringer, Jeffrey
Text similarity: an alternative way to search MEDLINE
- DOI:
10.1093/bioinformatics/btl388 - 发表时间:
2006-09-15 - 期刊:
- 影响因子:5.8
- 作者:
Lewis, James;Ossowski, Stephan;Garner, Harold R. - 通讯作者:
Garner, Harold R.
Nab-paclitaxel-based compared to docetaxel-based induction chemotherapy regimens for locally advanced squamous cell carcinoma of the head and neck.
- DOI:
10.1002/cam4.382 - 发表时间:
2015-04 - 期刊:
- 影响因子:4
- 作者:
Schell, Amy;Ley, Jessica;Wu, Ningying;Trinkaus, Kathryn;Wildes, Tanya Marya;Michel, Loren;Thorstad, Wade;Gay, Hiram;Lewis, James;Rich, Jason;Diaz, Jason;Paniello, Randal C.;Nussenbaum, Brian;Adkins, Douglas R. - 通讯作者:
Adkins, Douglas R.
Patient Attrition Between Diagnosis With HIV in Pregnancy-Related Services and Long-Term HIV Care and Treatment Services in Kenya: A Retrospective Study
- DOI:
10.1097/qai.0b013e318253258a - 发表时间:
2012-07-01 - 期刊:
- 影响因子:3.6
- 作者:
Ferguson, Laura;Lewis, James;Ross, David A. - 通讯作者:
Ross, David A.
Lewis, James的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lewis, James', 18)}}的其他基金
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Hodge Realizations of Motivic Cohomology
动机上同调的 Hodge 实现
- 批准号:
121004-2013 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Hodge Realizations of Motivic Cohomology
动机上同调的 Hodge 实现
- 批准号:
121004-2013 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Hodge Realizations of Motivic Cohomology
动机上同调的 Hodge 实现
- 批准号:
121004-2013 - 财政年份:2013
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Algebraic cycles, regulators and Hodge theory
代数环、调节子和霍奇理论
- 批准号:
121004-2008 - 财政年份:2012
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Algebraic cycles, regulators and Hodge theory
代数环、调节子和霍奇理论
- 批准号:
121004-2008 - 财政年份:2011
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Digital Quantum Simulations of Ground States and Dynamics: Analysis and Realizations
基态和动力学的数字量子模拟:分析和实现
- 批准号:
2310614 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Noisy quantum devices: Theory and realizations
噪声量子设备:理论与实现
- 批准号:
RGPIN-2021-02598 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Realizations and practical applications of quantum statistical machine learning theory with navigation functions
具有导航功能的量子统计机器学习理论的实现与实际应用
- 批准号:
22H03656 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Support theories: axiomatics, realizations and calculations
支持理论:公理、实现和计算
- 批准号:
2200832 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
Noisy quantum devices: Theory and realizations
噪声量子设备:理论与实现
- 批准号:
RGPIN-2021-02598 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Realizations of graph symmetries through spatial embeddings
通过空间嵌入实现图对称性
- 批准号:
20K03597 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realizations of singularity configurations of discrete Painlevé equations
离散Painlev奇点配置的实现
- 批准号:
19K14579 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists