Representation theory of finite groups and association schemes
有限群表示论和关联格式
基本信息
- 批准号:194195-2012
- 负责人:
- 金额:$ 0.87万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Groups are algebraic structures that can be used to understand symmetries of objects. The representation theory of groups is the area of algebra that makes it possible for us to represent these symmetries in a matrix form, which gives us a means to work with complicated structure using the familiar tools of linear algebra. A basic understanding of group representation theory is essential for an understanding of research being done now in computer science, chemistry, physics, and information theory.
My work in group representation theory focuses on the possibilities that can arise when the entries of the matrices being used in the representations are restricted to the field of rational numbers. With this restriction, many complicated division algebra structures can be present that do not occur when the entries of the matrices are allowed to range freely over the real or complex numbers. One of the theoretical tools available for dealing with these division algebras is the Brauer group, something that appears in many places in mathematics. One of the goals of my proposal is look for a generalization of the Brauer group that could be of use in new approaches to some of the most important problems in the representation theory of finite groups.
The other aspect of my proposal concerns association schemes, a combinatorial generalization of groups that was discovered to have useful applications in statistics and coding theory about 50 years ago. Another main goal of my proposal is to contribute to the development of a representation theory for association schemes along the lines of the representation theory for groups. Many of the things that we know for groups are open questions for association schemes. My students and I hope to be able to settle some of these issues in the course of this work, and open up the area of association schemes to appear future applications of representation theory.
群是可用于理解对象的对称性的代数结构。群的表示理论是一个代数领域,它使我们能够用矩阵的形式来表示这些对称,这给了我们一种使用我们熟悉的线性代数工具来处理复杂结构的方法。对群表示理论的基本理解对于理解目前在计算机科学、化学、物理和信息论中所做的研究是必不可少的。
我在群表示理论方面的工作集中在当表示中使用的矩阵的条目被限制在有理数领域时可能出现的可能性。有了这个限制,可能会出现许多复杂的除法代数结构,当允许矩阵的项在实数或复数上自由取值时,这些结构不会出现。处理这些除法代数的理论工具之一是布劳尔群,它出现在数学的许多地方。我的建议的目标之一是寻找Brauer群的推广,它可以用于解决有限群表示理论中一些最重要的问题的新方法。
我的建议的另一个方面涉及联合方案,这是一种群的组合推广,大约50年前被发现在统计学和编码理论中有有用的应用。我的提议的另一个主要目标是沿着群的表示理论的路线,为联合方案的表示理论的发展做出贡献。我们所知道的关于团体的许多事情都是关于联合方案的公开问题。我和我的学生希望能够在这项工作的过程中解决其中的一些问题,并开辟协会方案的领域,以出现未来表征理论的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Herman, Allen其他文献
Adversities in childhood and adult psychopathology in the South Africa Stress and Health Study: associations with first-onset DSM-IV disorders.
- DOI:
10.1016/j.socscimed.2010.08.015 - 发表时间:
2010-11 - 期刊:
- 影响因子:5.4
- 作者:
Slopen, Natalie;Williams, David R.;Seedat, Soraya;Moomal, Hashim;Herman, Allen;Stein, Dan J. - 通讯作者:
Stein, Dan J.
Herman, Allen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Herman, Allen', 18)}}的其他基金
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2022
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2020
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2017
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Representation theory of finite groups and association schemes
有限群表示论和关联格式
- 批准号:
194195-2012 - 财政年份:2016
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Representation theory of finite groups and association schemes
有限群表示论和关联格式
- 批准号:
194195-2012 - 财政年份:2014
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Representation theory of finite groups and association schemes
有限群表示论和关联格式
- 批准号:
194195-2012 - 财政年份:2013
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Representation theory of finite groups and association schemes
有限群表示论和关联格式
- 批准号:
194195-2012 - 财政年份:2012
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
高阶微分方程的周期解及多重性
- 批准号:11501240
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
- 批准号:11301334
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
MPS-Ascend: Representation Theory of General Linear Groups over Finite Local Principal Ideal Rings
MPS-Ascend:有限局部主理想环上的一般线性群表示论
- 批准号:
2213166 - 财政年份:2022
- 资助金额:
$ 0.87万 - 项目类别:
Fellowship Award
Cohomology of finite groups and homotopy theory of classifying spaces from the viewpoint of representation theory
从表示论的角度看有限群的上同调与空间分类同伦论
- 批准号:
21K03154 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1855773 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Topics in the representation theory of finite groups and related algebras
有限群表示论及相关代数的主题
- 批准号:
2114521 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Studentship
Representation Theory of Finite Groups
有限群表示论
- 批准号:
509063-2017 - 财政年份:2017
- 资助金额:
$ 0.87万 - 项目类别:
University Undergraduate Student Research Awards
Cohomology theory of finite groups from the viewpoint of representation theory
从表示论的角度看有限群的上同调理论
- 批准号:
16K05054 - 财政年份:2016
- 资助金额:
$ 0.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1566618 - 财政年份:2016
- 资助金额:
$ 0.87万 - 项目类别:
Continuing Grant
Representation theory of finite groups and association schemes
有限群表示论和关联格式
- 批准号:
194195-2012 - 财政年份:2016
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Conference Proposal: Geometric and topological aspects of the representation theory of finite groups
会议提案:有限群表示论的几何和拓扑方面
- 批准号:
1624050 - 财政年份:2016
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Broue's conjecture in representation theory of finite groups and related topics
有限群表示论中的布劳猜想及相关话题
- 批准号:
15K04776 - 财政年份:2015
- 资助金额:
$ 0.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




