Spectral properties and solutions for parameter dependent differential equations
参数相关微分方程的谱特性和解
基本信息
- 批准号:238869-2011
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research is in the areas of Nonlinear Analysis and Differential Equations. The emphasis is on the investigation of parameter dependent nonlinear boundary value problems by applying spectral theories. Results on existence, uniqueness, multiplicity, positivity, nodal properties, bifurcation and stability of solutions are to be stated directly in terms of the location of the point (the parameters) relative to the spectra.
Problems with nonlinear or nonlocal boundary conditions are less classical and therefore the methods to approach them are not completely developed. In addition to the existing methodologies in Nonlinear Analysis, new methods and tools are expected to be developed. In particular, the theoretical results will be enriched by numerical analysis through Matlab or other programming languages.
Parameter dependent difference or differential equations have wide applications in modeling real world phenomena. As an interdisciplinary project, results from the research can be applied to the study of some mathematical models from population biology, chemistry, economics, communication networks, optimization, engineering and mechanics.
拟议的研究是在非线性分析和微分方程领域。重点是应用谱理论研究含参数的非线性边值问题。结果的存在性,唯一性,多重性,积极性,节点属性,分歧和稳定性的解决方案是直接在相对于频谱的点(参数)的位置。
具有非线性或非局部边界条件的问题不太经典,因此处理它们的方法还没有完全发展。除了现有的非线性分析方法,新的方法和工具预计将被开发。特别是通过Matlab或其他编程语言进行数值分析,丰富了理论结果。
参数相关差分或微分方程在模拟真实的世界现象中有着广泛的应用。作为一个跨学科的项目,研究成果可应用于种群生物学、化学、经济学、通信网络、最优化、工程和力学等领域的一些数学模型的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng, Wenying其他文献
STABILITY ANALYSIS ON AN ECONOMIC EPIDEMIOLOGICAL MODEL WITH VACCINATION
- DOI:
10.3934/mbe.2017051 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:2.6
- 作者:
Avusuglo, Wisdom S.;Abdella, Kenzu;Feng, Wenying - 通讯作者:
Feng, Wenying
Mining network data for intrusion detection through combining SVMs with ant colony networks
- DOI:
10.1016/j.future.2013.06.027 - 发表时间:
2014-07-01 - 期刊:
- 影响因子:7.5
- 作者:
Feng, Wenying;Zhang, Qinglei;Huang, Jimmy Xiangji - 通讯作者:
Huang, Jimmy Xiangji
On the number of positive solutions of a nonlinear algebraic system
- DOI:
10.1016/j.laa.2006.10.026 - 发表时间:
2007-04-15 - 期刊:
- 影响因子:1.1
- 作者:
Zhang, Guang;Feng, Wenying - 通讯作者:
Feng, Wenying
Feng, Wenying的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng, Wenying', 18)}}的其他基金
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
- 批准号:
RGPIN-2016-06098 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
- 批准号:
RGPIN-2016-06098 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
- 批准号:
RGPIN-2016-06098 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
- 批准号:
RGPIN-2016-06098 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning Applied to Energy Forecast: Implementation and Evaluation
深度学习应用于能源预测:实施和评估
- 批准号:
524623-2018 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Engage Plus Grants Program
Computational Algorithms for Energy Efficiency and Cost Reduction
提高能源效率和降低成本的计算算法
- 批准号:
510601-2017 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Engage Grants Program
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
- 批准号:
RGPIN-2016-06098 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
- 批准号:
RGPIN-2016-06098 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Spectral properties and solutions for parameter dependent differential equations
参数相关微分方程的谱特性和解
- 批准号:
238869-2011 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Spectral properties and solutions for parameter dependent differential equations
参数相关微分方程的谱特性和解
- 批准号:
238869-2011 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
- 批准号:20977008
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
- 批准号:50702003
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Modelling extensional flow properties of solutions of polymers and thread-like micelles
模拟聚合物和线状胶束溶液的拉伸流动特性
- 批准号:
2323147 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Development of Nanochannel Membranes Having Rapid Transport Properties in Aqueous and Non-aqueous Solutions
开发在水和非水溶液中具有快速传输特性的纳米通道膜
- 批准号:
23K17369 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Analysis on Qualitative Properties and Singularities of Solutions to k-Hessian Equation and k-curvature Equation
k-Hessian方程和k-曲率方程解的定性性质和奇异性分析
- 批准号:
22K03386 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hydrothermal properties of complex aqueous solutions, and applications to ore-forming systems
复杂水溶液的水热性质及其在成矿系统中的应用
- 批准号:
RGPIN-2018-04370 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Bridge Housing Solutions: An AI prediction engine (utilising NLP and contextual scoring) to match social housing properties and reduce the need for temporary accommodation
Bridge Housing Solutions:人工智能预测引擎(利用 NLP 和上下文评分)来匹配社会住房属性并减少临时住宿的需求
- 批准号:
10035267 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Collaborative R&D
Development of asphalt solutions for paving applications with optimum environmental and engineering properties
开发具有最佳环境和工程性能的铺路应用沥青解决方案
- 批准号:
555488-2020 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Alliance Grants
Stabilities and properties of high-pressure oxide phases containing Cr with focus on solid solutions of (Mg,Fe2+)3Fe2O6 – testing for possible precursor phases for inclusions in diamond
含 Cr 的高压氧化物相的稳定性和性能,重点关注 (Mg,Fe2)3Fe2O6 的固溶体 â 测试金刚石中夹杂物可能的前体相
- 批准号:
504772250 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Research Grants
Hydrothermal properties of complex aqueous solutions, and applications to ore-forming systems
复杂水溶液的水热性质及其在成矿系统中的应用
- 批准号:
RGPIN-2018-04370 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Properties of Solutions to Degenerate Elliptic Equations and Applications
简并椭圆方程解的性质及应用
- 批准号:
RGPIN-2017-04872 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Research on deterioration and conservation of nature-based cultural properties as potential educational and tourism resources
作为潜在教育和旅游资源的自然文化财产的恶化和保护研究
- 批准号:
21H03726 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)