Computationally Efficient Adaptive Spline Filters for Nonlinear State Estimation
用于非线性状态估计的计算高效的自适应样条滤波器
基本信息
- 批准号:250256-2012
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problem of nonlinear/non-Gaussian filtering has generated significant interest in the literature due to the inherent nonlinearity in most practical systems. The nonlinearity in state estimation problems may arise due to its presence in the state-to-measurement equation or in the evolution of the state itself. The presence of multiple objects further complicates the problem by adding data association to the mix. The optimal nonlinear state estimator consists of the computation of the conditional (posterior) pdf of the multitarget state given all the measurements available up to the current time. Optimal multitarget nonlinear filtering is in general a non-tractable problem, not just because of computational complexity but also due to the multimodal nature of multitarget pdf.
Under these circumstances, one needs an algorithm that is capable of automatically adapting itself by recognizing the spatio-temporal nonlinearity variations (over one target or across multiple ones). Our multitarget state propagation will be based on multidimensional spline representation. Splines have been used effectively to represent complex (and arbitrary) curves and surfaces in computer science, graphics, aerospace, automobile industry, statistics and mathematics using a finite set of knots. Our innovative approach is to use splines to represent any arbitrary multitarget pdf and then derive the equations for propagating the splines over time based on the standard prediction and update steps. Splines posses a number of desirable properties: they are continuous, can handle multiple models, inherently capable of measuring nonlinearity, do not suffer from degeneracy or need resampling, can incorporate road map-like constraints, are sensor-agnostic and can be adaptive by varying knots spatially and temporally. Significant theoretical extensions to the more realistic state estimation problems with multiple targets, false alarms, missed detections and constraints are proposed in this work.
非线性/非高斯滤波问题由于在大多数实际系统中固有的非线性而引起了文献的极大兴趣。状态估计问题中的非线性可能是由于状态-测量方程或状态本身的演化而产生的。多个对象的存在通过添加数据关联使问题进一步复杂化。最优非线性状态估计包括给定当前所有可用测量值的多目标状态的条件(后验)pdf的计算。最优多目标非线性滤波通常是一个难以处理的问题,这不仅是因为计算的复杂性,而且还因为多目标非线性滤波的多模态特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirubarajan, Thia其他文献
Seamless group target tracking using random finite sets
使用随机有限集进行无缝群组目标跟踪
- DOI:
10.1016/j.sigpro.2020.107683 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:4.4
- 作者:
Li, Zhejun;Hu, Weidong;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Multiple Model Multi-Bernoulli Filters for Manoeuvering Targets
- DOI:
10.1109/taes.2013.6621845 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:4.4
- 作者:
Dunne, Darcy;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Arbitrary Microphone Array Optimization Method Based on TDOA for Specific Localization Scenarios
基于TDOA的特定定位场景任意麦克风阵列优化方法
- DOI:
10.3390/s19194326 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:3.9
- 作者:
Liu, Haitao;Kirubarajan, Thia;Xiao, Qian - 通讯作者:
Xiao, Qian
Application of an Efficient Graph-Based Partitioning Algorithm for Extended Target Tracking Using GM-PHD Filter
- DOI:
10.1109/taes.2020.2990803 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:4.4
- 作者:
Qin, Zheng;Kirubarajan, Thia;Liang, Yangang - 通讯作者:
Liang, Yangang
Analysis of Propagation Delay Effects on Bearings-Only Fusion of Heterogeneous Sensors
- DOI:
10.1109/tsp.2021.3129599 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:5.4
- 作者:
Arulampalam, Sanjeev;Ristic, Branko;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Kirubarajan, Thia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirubarajan, Thia', 18)}}的其他基金
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Airborne Tracking of Small Ground and Maritime Targets Under Realistic Conditions
现实条件下空中跟踪小型地面和海上目标
- 批准号:
535810-2018 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
- 批准号:
538404-2018 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
- 批准号:
538404-2018 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
- 批准号:
501206-2016 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Department of National Defence / NSERC Research Partnership
NSERC/General Dynamics Mission Systems-Canada Industrial Research Chair in Target Tracking and Information Fusion
NSERC/通用动力任务系统-加拿大目标跟踪和信息融合工业研究主席
- 批准号:
521710-2016 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Industrial Research Chairs
Software-Controlled Active Electronically Scanned Array Radar for Airbone Ground Surveillance
用于机载地面监视的软件控制有源电子扫描阵列雷达
- 批准号:
500634-2016 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Department of National Defence / NSERC Research Partnership
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
507969-2017 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
DGDND-2017-00082 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
DND/NSERC Discovery Grant Supplement
相似海外基金
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
- 批准号:
MR/X030261/1 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Research Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Adaptive and Efficient Robot Positioning Through Model and Task Fusion
通过模型和任务融合实现自适应且高效的机器人定位
- 批准号:
DE240100149 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
- 批准号:
2339731 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Developing and enabling efficient hypothesis test for response-adaptive design with patient benefit goals
开发并启用有效的假设检验,以实现具有患者利益目标的响应自适应设计
- 批准号:
MR/Z503538/1 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Research Grant
Lite(House) - A Financially Flexible, Adaptive and Efficient Live/Work Housing Proposal
Lite(House) - 财务灵活、适应性强且高效的生活/工作住房提案
- 批准号:
10071140 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative R&D
CAREER: Development of Adaptive and Efficient Computational Inverse Design Methods for Organic Functional Materials
职业:有机功能材料自适应高效计算逆向设计方法的开发
- 批准号:
2339804 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
RI:Small:Dynamic Networks for Efficient, Adaptive, and Multimodal Vision
RI:Small:用于高效、自适应和多模态视觉的动态网络
- 批准号:
2303153 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
ERI: Towards Intelligent, Cost-Efficient, and Adaptive Techniques to Enable Biomedical Hardware-Assisted Cybersecurity
ERI:采用智能、经济高效和自适应的技术来实现生物医学硬件辅助的网络安全
- 批准号:
2139034 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
CCF: SHF: Small: Self-Adaptive Interference-Avoiding Wireless Receiver Hardware through Real-Time Learning-Based Automatic Optimization of Power-Efficient Integrated Circuits
CCF:SHF:小型:通过基于实时学习的高能效集成电路自动优化实现自适应干扰避免无线接收器硬件
- 批准号:
2218845 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant