Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
基本信息
- 批准号:RGPIN-2017-05365
- 负责人:
- 金额:$ 4.23万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of state estimation is to mitigate the effects of noise in sensor measurements and extract the fixed or time-varying parameters of an object of interest using certain system and measurement models. Noise mitigation is necessary not only because no sensor is perfect, but also because our knowledge or model assumptions about any unknown system and its parameters are imprecise. The estimator considers the model uncertainties and noise statistics in order to optimally estimate the parameters of the subject of interest to some optimality criterion. While state estimation typically considers only the effects of system (or model) noise and measurement noise, in estimating the state of a moving object over time, target tracking considers additional measurement-origin uncertainties due to missing detections, false alarms, and interference from other objects of interest. In target tracking, the objective of state estimation is then to mitigate the effects of model and sensor noise and those of measurement-origin uncertainties.
With the emergence of affordable sensors (e.g., cameras, sonobuoys, satellite receivers), sensor processing with the objective of state estimation and target tracking has become common. The ubiquitous and affordable nature of these sensors results in additional uncertainties that have not been addressed properly in the literature to date. In sensor processing where expensive radar systems with only one or a handful of sensors are used, systemic errors such as sensor biases, clutter, electronic countermeasures, and other interference have been effectively modeled and addressed. But, given the large number of heterogeneous sensors available, these additional sources of uncertainties have not been modeled or addressed optimally. This situation provides the motivation for the proposed work.
Specifically, we will address the following problems: 1) mitigating and taking advantage of various environmental conditions to improve tracking results; 2) track-before-detect for low-observable targets in the presence of heavy clutter; 3) integration of state estimation with sensor management; and 4) constrained state estimation and prediction with the aid of uncertain external data sources (e.g., maps, terrain data). Our solution methodology is based on Point Process models and the Analytic Combinatorics (AC) formalism, which provide an efficient mechanism for working with a wide range of uncertainties in large-scale problems. To provide a comprehensive solution, we will model various forms of uncertainties that are internal and external to sensors, develop robust algorithms to minimize the efforts of sensors, and quantify the performance of the new algorithms using extensions to the AC formalism. In addition to advancing the state-of-the-art, the project will also produce a number of highly qualified personnel in areas of critical importance to Canada.
状态估计的目的是减轻传感器测量中的噪声的影响,并使用某些系统和测量模型提取感兴趣对象的固定或时变参数。噪声抑制是必要的,不仅因为没有传感器是完美的,而且因为我们对任何未知系统及其参数的知识或模型假设是不精确的。该估计器考虑模型的不确定性和噪声统计,以最佳估计的参数的一些最优性标准的利益。虽然状态估计通常只考虑系统(或模型)噪声和测量噪声的影响,但在估计移动对象随时间的状态时,目标跟踪考虑由于遗漏检测、误报警和来自其他感兴趣对象的干扰而引起的额外测量源不确定性。在目标跟踪中,状态估计的目标是减轻模型和传感器噪声以及测量源不确定性的影响。
随着可负担得起的传感器(例如,照相机、声纳浮标、卫星接收器),以状态估计和目标跟踪为目的的传感器处理已经变得普遍。这些传感器的无处不在和负担得起的性质导致了迄今为止在文献中尚未适当解决的额外的不确定性。在使用仅具有一个或少数传感器的昂贵雷达系统的传感器处理中,诸如传感器偏差、杂波、电子对抗和其他干扰的系统误差已经被有效地建模和解决。但是,由于大量的异构传感器可用,这些额外的不确定性来源还没有被建模或最佳解决。这种情况为拟议的工作提供了动力。
具体而言,我们将解决以下问题:1)减轻和利用各种环境条件来改善跟踪结果; 2)在存在严重杂波的情况下对低可观测目标进行检测前跟踪; 3)将状态估计与传感器管理相结合;以及4)借助于不确定的外部数据源(例如,地图、地形数据)。我们的解决方案是基于点过程模型和分析组合学(AC)的形式主义,这提供了一个有效的机制,在大规模的问题与广泛的不确定性。为了提供一个全面的解决方案,我们将模拟传感器内部和外部的各种形式的不确定性,开发强大的算法,以最大限度地减少传感器的努力,并量化新算法的性能使用扩展的AC形式主义。除了推进最先进的技术外,该项目还将在对加拿大至关重要的领域培养一些高素质的人才。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirubarajan, Thia其他文献
Seamless group target tracking using random finite sets
使用随机有限集进行无缝群组目标跟踪
- DOI:
10.1016/j.sigpro.2020.107683 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:4.4
- 作者:
Li, Zhejun;Hu, Weidong;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Multiple Model Multi-Bernoulli Filters for Manoeuvering Targets
- DOI:
10.1109/taes.2013.6621845 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:4.4
- 作者:
Dunne, Darcy;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Arbitrary Microphone Array Optimization Method Based on TDOA for Specific Localization Scenarios
基于TDOA的特定定位场景任意麦克风阵列优化方法
- DOI:
10.3390/s19194326 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:3.9
- 作者:
Liu, Haitao;Kirubarajan, Thia;Xiao, Qian - 通讯作者:
Xiao, Qian
Application of an Efficient Graph-Based Partitioning Algorithm for Extended Target Tracking Using GM-PHD Filter
- DOI:
10.1109/taes.2020.2990803 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:4.4
- 作者:
Qin, Zheng;Kirubarajan, Thia;Liang, Yangang - 通讯作者:
Liang, Yangang
Analysis of Propagation Delay Effects on Bearings-Only Fusion of Heterogeneous Sensors
- DOI:
10.1109/tsp.2021.3129599 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:5.4
- 作者:
Arulampalam, Sanjeev;Ristic, Branko;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Kirubarajan, Thia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirubarajan, Thia', 18)}}的其他基金
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2021
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Airborne Tracking of Small Ground and Maritime Targets Under Realistic Conditions
现实条件下空中跟踪小型地面和海上目标
- 批准号:
535810-2018 - 财政年份:2021
- 资助金额:
$ 4.23万 - 项目类别:
Collaborative Research and Development Grants
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
- 批准号:
538404-2018 - 财政年份:2021
- 资助金额:
$ 4.23万 - 项目类别:
Collaborative Research and Development Grants
Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
- 批准号:
501206-2016 - 财政年份:2020
- 资助金额:
$ 4.23万 - 项目类别:
Department of National Defence / NSERC Research Partnership
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
- 批准号:
538404-2018 - 财政年份:2020
- 资助金额:
$ 4.23万 - 项目类别:
Collaborative Research and Development Grants
NSERC/General Dynamics Mission Systems-Canada Industrial Research Chair in Target Tracking and Information Fusion
NSERC/通用动力任务系统-加拿大目标跟踪和信息融合工业研究主席
- 批准号:
521710-2016 - 财政年份:2020
- 资助金额:
$ 4.23万 - 项目类别:
Industrial Research Chairs
Software-Controlled Active Electronically Scanned Array Radar for Airbone Ground Surveillance
用于机载地面监视的软件控制有源电子扫描阵列雷达
- 批准号:
500634-2016 - 财政年份:2020
- 资助金额:
$ 4.23万 - 项目类别:
Department of National Defence / NSERC Research Partnership
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
507969-2017 - 财政年份:2019
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2019
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
DGDND-2017-00082 - 财政年份:2019
- 资助金额:
$ 4.23万 - 项目类别:
DND/NSERC Discovery Grant Supplement
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
- 批准号:61701437
- 批准年份:2017
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
- 批准号:
2330377 - 财政年份:2024
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2021
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Advancing Robust Control and State Estimation of Converter-Based Power Systems
合作研究:推进基于转换器的电力系统的鲁棒控制和状态估计
- 批准号:
2151571 - 财政年份:2021
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Collaborative Research: Advancing Robust Control and State Estimation of Converter-Based Power Systems
合作研究:推进基于转换器的电力系统的鲁棒控制和状态估计
- 批准号:
2013739 - 财政年份:2020
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Collaborative Research: Advancing Robust Control and State Estimation of Converter-Based Power Systems
合作研究:推进基于转换器的电力系统的鲁棒控制和状态估计
- 批准号:
2013786 - 财政年份:2020
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
507969-2017 - 财政年份:2019
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
RII Track-4: Robust Matrix Completion State Estimation in Low-Observability Distribution Systems under False Data Injection Attacks
RII Track-4:虚假数据注入攻击下低可观测性分布系统中的鲁棒矩阵完成状态估计
- 批准号:
1929147 - 财政年份:2019
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2019
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
DGDND-2017-00082 - 财政年份:2019
- 资助金额:
$ 4.23万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Study on a multimodal psychological state estimation robust to tourist attribute differences and environmental noises
对旅游者属性差异和环境噪声鲁棒的多模态心理状态估计研究
- 批准号:
19K24345 - 财政年份:2019
- 资助金额:
$ 4.23万 - 项目类别:
Grant-in-Aid for Research Activity Start-up