Singular Integrals in Geometric Analysis
几何分析中的奇异积分
基本信息
- 批准号:261100-2012
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometric Analysis (GA) is a branch of mathematics treating the interface of Differential Geometry (DG) and Partial Differential Equations (PDE). This field includes both the use of PDE-methods in DG and the motivation of DG-results in PDE. In the study of GA, it is naturally and frequently needed to find complete integrability conditions for the existence of metrics with certain curvature conditions. Such a finding often involves various kinds of singular integrals that exist more or less in Harmonic Analysis (HA). The proposed research program will shed light upon this issue through the following three p-Laplace oriented objectives:
1. p-Green's functions and their geometric properties;
2. Minkowski's problem for generalized torsional rigidity;
3. Morrey-Riesz's integrals with applications to some geometric PDE.
The novelty of this research program is to utilize new HA tools and techniques (especially, an effective incorporation of Riesz potentials and Morrey capacities plus Choquet integrals) to settle some fundamental problems on singular integrals arising from GA. This research program, creating a synthesis among a host of distinct topics, will not only be useful to researchers in both analysis and geometry based on either capacity or curvature, but also be of interest to both physicists and engineers in certain areas.
几何分析(GA)是处理微分几何(DG)和偏微分方程(PDE)界面的数学分支。该领域既包括PDE方法在DG中的使用,也包括PDE中DG结果的动机。在遗传算法的研究中,通常需要找到具有一定曲率条件的度量存在的完全可积条件。这一发现往往涉及调和分析(HA)中或多或少存在的各种奇异积分。拟议的研究计划将通过以下三个面向p-拉普拉斯的目标来阐明这个问题:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao, Jie其他文献
Increased talin-vinculin spatial proximities in livers in response to spotted fever group rickettsial and Ebola virus infections
- DOI:
10.1038/s41374-020-0420-9 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:5
- 作者:
Liu, Yakun;Xiao, Jie;Gong, Bin - 通讯作者:
Gong, Bin
Development and characterization of a hydroxypropyl starch/zein bilayer edible film
- DOI:
10.1016/j.ijbiomac.2019.08.240 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:8.2
- 作者:
Chen, Xia;Cui, Feihe;Xiao, Jie - 通讯作者:
Xiao, Jie
Prokaryotic Expression of Eimeria magna SAG10 and SAG11 Genes and the Preliminary Evaluation of the Effect of the Recombinant Protein on Immune Protection in Rabbits.
- DOI:
10.3390/ijms231810942 - 发表时间:
2022-09-19 - 期刊:
- 影响因子:5.6
- 作者:
Pu, Jiayan;Xiao, Jie;Bai, Xin;Chen, Hao;Zheng, Ruoyu;Gu, Xiaobin;Xie, Yue;He, Ran;Xu, Jing;Jing, Bo;Peng, Xuerong;Yang, Guangyou - 通讯作者:
Yang, Guangyou
Identification of Key Genes Related to Immune Cells in Patients with COVID-19 Via Integrated Bioinformatics-Based Analysis.
- DOI:
10.1007/s10528-023-10400-1 - 发表时间:
2023-12 - 期刊:
- 影响因子:2.4
- 作者:
Chen, Zhao-jun;Xiao, Jie;Chen, Hai-hua - 通讯作者:
Chen, Hai-hua
Quantitative analysis of single-molecule superresolution images.
- DOI:
10.1016/j.sbi.2014.08.008 - 发表时间:
2014-10 - 期刊:
- 影响因子:6.8
- 作者:
Coltharp, Carla;Yang, Xinxing;Xiao, Jie - 通讯作者:
Xiao, Jie
Xiao, Jie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao, Jie', 18)}}的其他基金
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Singular Integrals in Geometric Analysis
几何分析中的奇异积分
- 批准号:
261100-2012 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Singular Integrals in Geometric Analysis
几何分析中的奇异积分
- 批准号:
261100-2012 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Singular Integrals in Geometric Analysis
几何分析中的奇异积分
- 批准号:
261100-2012 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Singular Integrals in Geometric Analysis
几何分析中的奇异积分
- 批准号:
261100-2012 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Geometric study of hypergeometric integrals
超几何积分的几何研究
- 批准号:
20K14276 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric quantum representations, iterated integrals and applications to topological field theory
几何量子表示、迭代积分及其在拓扑场论中的应用
- 批准号:
16H03931 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Singular Integrals in Geometric Analysis
几何分析中的奇异积分
- 批准号:
261100-2012 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Singular Integrals in Geometric Analysis
几何分析中的奇异积分
- 批准号:
261100-2012 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Singular Integrals in Geometric Analysis
几何分析中的奇异积分
- 批准号:
261100-2012 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Singular Integrals in Geometric Analysis
几何分析中的奇异积分
- 批准号:
261100-2012 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Iterated integrals, geometric structures of configuration spaces and applications to quantum topological invariants
迭代积分、配置空间的几何结构以及量子拓扑不变量的应用
- 批准号:
23340014 - 财政年份:2011
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Braid groups, iterated integrals and geometric structures of configuration spaces
配置空间的辫群、迭代积分和几何结构
- 批准号:
20340010 - 财政年份:2008
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Arithmetic geometric approach for period integrals
周期积分的算术几何方法
- 批准号:
20540010 - 财政年份:2008
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Foundation of the Geometric Function Theory in R^n: The Governing differential Forms, Variational Integrals and Nonlinear Elasticity
R^n 中的几何函数理论基础:控制微分形式、变分积分和非线性弹性
- 批准号:
0070807 - 财政年份:2000
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant