Foundation of the Geometric Function Theory in R^n: The Governing differential Forms, Variational Integrals and Nonlinear Elasticity
R^n 中的几何函数理论基础:控制微分形式、变分积分和非线性弹性
基本信息
- 批准号:0070807
- 负责人:
- 金额:$ 13.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract :ANALYTICAL FOUNDATIONS OF THE GEOMETRIC FUNCTION THEORY;VARIATIONAL INTEGRALS AND NONLINEAR ELASTICITYTadeusz IwaniecOne of the major recent advances in the higher dimensional geometricfunction theory is based on finding new differential equations analogousto the Cauchy-Riemann system in the complex plane. Hodge theory ofdifferential forms has come to play a central role in this rather modernapproach. The Jacobian determinants and the wedge products of the exactdifferential forms are subjected to a great deal of investigation, as theyprovide the means of achieving continuity, compactness, or normal familytype results. It is important to realize that the higher integrabilityproperties of the Jacobians can only be observed for mapping in theOrlicz-Sobolev classes. More recent developments have emphasized theconnection between quasiconformal mappings and the theory of nonlinearelasticity already formulated by S.S. Antman and J. Ball in 1976-77. Thisconnection is an important aspect of the proposal. And that is why wedepart from the usual quasiconformal theory quite far towards mappings(deformations of elastic bodies) with unbounded distortion. However, somecontrol, such as BMO-bounds, of the distortion tensor will be necessary toachieve concreate results. The governing equations for mappings of finitedistortion are non-linear first order systems of PDEs. There are alsorelated second order systems which arrise naturally as the Euler- Lagrangeequations of the associated variational integrals (stored energy of thedeformation). An analogy between the analytic aspects of the holomorphicfunctions and mappings of finite distortion is particularly pronounced ineven dimensions. A fruitful idea when studying these mappings is to viewthem as conformal with respect to certain measurable metric or conformalstructures. Many of these notions extend to Riemannian manifolds, andaccordingly, while we do not develop this aspect in full all the machinerywe set up is ready and willing for these generalizations. The reader interested in developments along these lines and acomprehensive account of the geometric function theory is warmly referredto the forthcoming monograph of G. Martin and PI.
翻译后摘要:几何函数理论的分析基础;变分积分和非线性弹性Tadeusz Iwaniec最近在高维几何函数理论的主要进展之一是基于寻找新的微分方程类似于Cauchy-Riemann系统在复平面上。霍奇理论的微分形式已经发挥了核心作用,在这一相当现代的方法。雅可比行列式和楔形产品的exactdifferential形式进行了大量的调查,因为他们提供的手段,实现连续性,紧凑性,或正常的familytype结果。重要的是要认识到,雅可比数的更高可积性只能在Orlicz-Sobolev类中的映射中观察到。最近的发展强调了拟共形映射与S.S. Antman和J. Ball,1976-77年。这种联系是该提案的一个重要方面。这就是为什么我们远离通常的拟共形理论相当远的映射(弹性体的变形)与无限失真。然而,某些控制,如BMO界限,失真张量将是必要的,以实现concreate结果。有限畸变映射的控制方程是一阶非线性偏微分方程组。也有相关的二阶系统,自然地产生为相关变分积分(变形的储能)的欧拉-拉格朗日方程。全纯函数和有限畸变映射的解析方面之间的类比在偶数维中特别明显。在研究这些映射时,一个富有成效的想法是将它们看作关于某些可测度量或共形结构的共形映射。许多这些概念延伸到黎曼流形,因此,虽然我们没有充分发展这方面的所有机器,我们建立准备和愿意为这些推广。 读者感兴趣的发展沿着这些路线和acomensive帐户的几何函数理论是热烈欢迎即将出版的专着G。马丁和派
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tadeusz Iwaniec其他文献
${\cal H}^1$ -estimates of Jacobians by subdeterminants
- DOI:
10.1007/s00208-002-0341-5 - 发表时间:
2002-10-01 - 期刊:
- 影响因子:1.400
- 作者:
Tadeusz Iwaniec;Jani Onninen - 通讯作者:
Jani Onninen
Div-curl fields of finite distortion
- DOI:
10.1016/s0764-4442(98)80160-2 - 发表时间:
1998-10-01 - 期刊:
- 影响因子:
- 作者:
Tadeusz Iwaniec;Carlo Sbordone - 通讯作者:
Carlo Sbordone
Dynamics of Quasiconformal Fields
- DOI:
10.1007/s10884-010-9203-0 - 发表时间:
2010-12-24 - 期刊:
- 影响因子:1.300
- 作者:
Tadeusz Iwaniec;Leonid V. Kovalev;Jani Onninen - 通讯作者:
Jani Onninen
On Minimisers of $$L^p$$ -mean Distortion
- DOI:
10.1007/s40315-014-0063-1 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:0.700
- 作者:
Tadeusz Iwaniec;Gaven Martin;Jani Onninen - 通讯作者:
Jani Onninen
Tadeusz Iwaniec的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tadeusz Iwaniec', 18)}}的其他基金
Variational approach to Geometric Function Theorem, Nonlinear PDEs and Hyperelasticy
几何函数定理、非线性偏微分方程和超弹性的变分法
- 批准号:
1802107 - 财政年份:2018
- 资助金额:
$ 13.07万 - 项目类别:
Continuing Grant
Conference: Harmonic Analysis, Complex Analysis, Spectral Theory and All That
会议:调和分析、复分析、谱理论等等
- 批准号:
1600705 - 财政年份:2016
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
Sobolev Mappings and Energy-Integrals in Mathematical Models of Nonlinear Elasticity
非线性弹性数学模型中的索博列夫映射和能量积分
- 批准号:
1301558 - 财政年份:2013
- 资助金额:
$ 13.07万 - 项目类别:
Continuing Grant
Extremal Problems in Quasiconformal Geometry and Nonlinear PDEs, an Invitation to n- Harmonic Hyperelasticity
拟共形几何和非线性偏微分方程中的极值问题,n 调和超弹性的邀请
- 批准号:
0800416 - 财政年份:2008
- 资助金额:
$ 13.07万 - 项目类别:
Continuing Grant
Geometric Analysis of Deformations of Finite Distortiion via Nonlinear PDEs and Null Lagrangians
通过非线性偏微分方程和零拉格朗日量对有限畸变变形进行几何分析
- 批准号:
0301582 - 财政年份:2003
- 资助金额:
$ 13.07万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
- 批准号:
0244297 - 财政年份:2003
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
Quasiconformal Mappings, Harmonic Analysis and Nonlinear Elasticity from the Prospective of PDEs
偏微分方程视角下的拟共形映射、调和分析和非线性弹性
- 批准号:
9706611 - 财政年份:1997
- 资助金额:
$ 13.07万 - 项目类别:
Continuing Grant
Mathematical Sciences: Quasiconformal Analysis and Harmonic Integrals with Applications to Nonlinear Elasticity
数学科学:拟共形分析和调和积分及其在非线性弹性中的应用
- 批准号:
9401104 - 财政年份:1994
- 资助金额:
$ 13.07万 - 项目类别:
Continuing Grant
Mathematical Sciences: Regularity Problems in Nonlinear Potential Theory and Quasiregular Mappings
数学科学:非线性势论和拟正则映射中的正则问题
- 批准号:
9208296 - 财政年份:1992
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
Mathematical Sciences: Regularity Problems for Variational Integrals and Quasiregular Mappings
数学科学:变分积分和拟正则映射的正则问题
- 批准号:
9007946 - 财政年份:1990
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Energy-Minimal Principles in Geometric Function Theory
几何函数理论中的能量最小原理
- 批准号:
2154943 - 财政年份:2022
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
Geometric Function Theory and Mathematical Physics
几何函数论与数学物理
- 批准号:
RGPIN-2019-04940 - 财政年份:2022
- 资助金额:
$ 13.07万 - 项目类别:
Discovery Grants Program - Individual
Geometric Function Theory and Mathematical Physics
几何函数论与数学物理
- 批准号:
RGPIN-2019-04940 - 财政年份:2021
- 资助金额:
$ 13.07万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Geometric Function Theory in Several Complex Variables
职业:多个复变量的几何函数论
- 批准号:
2045104 - 财政年份:2021
- 资助金额:
$ 13.07万 - 项目类别:
Continuing Grant
Removability in Geometric Function Theory
几何函数理论中的可移性
- 批准号:
2050113 - 财政年份:2021
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
Geometric Function Theory in Euclidean and Metric Spaces
欧几里得和度量空间中的几何函数理论
- 批准号:
2055171 - 财政年份:2021
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
Geometric Function Theory and Mathematical Physics
几何函数论与数学物理
- 批准号:
RGPIN-2019-04940 - 财政年份:2020
- 资助金额:
$ 13.07万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Elucidating the Influence of Metal Binding on Electronic/Geometric Structure-Function Relationships in Photorespiration
合作研究:阐明金属结合对光呼吸中电子/几何结构-功能关系的影响
- 批准号:
1904310 - 财政年份:2019
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
Geometric Function Theory and Mathematical Physics
几何函数论与数学物理
- 批准号:
RGPIN-2019-04940 - 财政年份:2019
- 资助金额:
$ 13.07万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Elucidating the Influence of Metal Binding on Electronic/Geometric Structure-Function Relationships in Photorespiration
合作研究:阐明金属结合对光呼吸中电子/几何结构-功能关系的影响
- 批准号:
1904535 - 财政年份:2019
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant