Using eye-tracking and computational modeling to understanding the dynamic allocation of attention during category learning

使用眼动追踪和计算模型来理解类别学习期间注意力的动态分配

基本信息

  • 批准号:
    327301-2013
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

People are good at learning to make distinctions. They naturally come, without any special conscious effort, to distinguish between dogs and cats, anger and sadness, and tables and chairs. But, not everything is easy to identify. Radiologists, for example, need years of training to detect tumors in x-ray films. The research in this proposal is aimed at improving our understanding of how humans learn to classify things. The purpose of our experiments and models is to understand how selective attention, the ability to pay attention to important features and ignore irrelevant ones, enables categorization and interacts with our memory and perceptual systems. Theories in this area of research are formal theories, mathematical formulas that precisely specify what category a person is likely to think something belongs to, given what the object looks like and what the person knows. Experiments are used to record how people's responses improve when learning categories, and these data are used to quantitatively test the predictions of formal theories. The primary goal of the proposed research is to produce an accurate formal theory of selective attention. By studying eye-movements one trades the difficulties in studying attention directly for more manageable problems that can be dealt with in the lab. Eye-movements are controlled by the brain, and their positioning is learned from experience; when an object or location is useful to look at, our visual attention is drawn to that location, and with attention goes our gaze. Scientists have traditionally focused on either the biology of the eyes, the study of attention or the problem of learning but rarely do the three intersect in a single research program. What I am doing is bringing together expertise in mathematics and the psychology of learning to examine learned attention by studying eye-movements. I am doing this using sophisticated eye-tracking equipment, data analysis and computer simulations made possible by Canada's high-performance computing clusters. As basic research in cognitive science, the present work is focused on improving our understanding of human cognition generally. This knowledge can then be used by applied scientists to design automatic computer-based classification systems or to improve training procedures for expert classifiers, such as airport security personnel who need to interpret the output of luggage scanners.
人们善于学会辨别。他们自然而然地就能区分狗和猫、愤怒和悲伤、桌子和椅子。但是,并非所有事情都容易识别。例如,放射科医生需要多年的培训才能在 X 光片中检测肿瘤。该提案中的研究旨在提高我们对人类如何学习对事物进行分类的理解。我们的实验和模型的目的是了解选择性注意,即关注重要特征并忽略不相关特征的能力,如何实现分类并与我们的记忆和感知系统相互作用。 该研究领域的理论是形式理论和数学公式,根据物体的外观和人的知识,精确地指定一个人可能认为某物属于哪个类别。实验用于记录人们在学习类别时的反应如何改善,这些数据用于定量检验正式理论的预测。拟议研究的主要目标是产生准确的选择性注意的形式理论。 通过研究眼球运动,人们可以将直接研究注意力的困难换成可以在实验室中处理的更易于管理的问题。眼睛的运动是由大脑控制的,它们的位置是从经验中习得的;当某个物体或位置值得一看时,我们的视觉注意力就会被吸引到该位置,并且注意力也会随之转移。传统上,科学家们要么关注眼睛的生物学,要么关注注意力的研究,要么关注学习的问题,但很少将这三者交叉在一个研究项目中。我正在做的是将数学和学习心理学的专业知识结合起来,通过研究眼球运动来检查习得的注意力。我正在使用加拿大高性能计算集群提供的先进的眼动追踪设备、数据分析和计算机模拟来完成这项工作。 作为认知科学的基础研究,目前的工作重点是提高我们对人类认知的总体理解。应用科学家可以利用这些知识来设计基于计算机的自动分类系统,或改进专家分类员的培训程序,例如需要解释行李扫描仪输出的机场安检人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Blair, Mark其他文献

Digit eyes: Learning-related changes in information access in a computer game parallel those of oculomotor attention in laboratory studies
  • DOI:
    10.3758/s13414-020-02019-w
  • 发表时间:
    2020-04-24
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    McColeman, Caitlyn;Thompson, Joe;Blair, Mark
  • 通讯作者:
    Blair, Mark

Blair, Mark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Blair, Mark', 18)}}的其他基金

Using eye-tracking and computational modeling to understanding the dynamic allocation of attention during category learning
使用眼动追踪和计算模型来理解类别学习期间注意力的动态分配
  • 批准号:
    327301-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Using eye-tracking and computational modeling to understanding the dynamic allocation of attention during category learning
使用眼动追踪和计算模型来理解类别学习期间注意力的动态分配
  • 批准号:
    327301-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Using eye-tracking and computational modeling to understanding the dynamic allocation of attention during category learning
使用眼动追踪和计算模型来理解类别学习期间注意力的动态分配
  • 批准号:
    327301-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Using eye-tracking and computational modeling to understanding the dynamic allocation of attention during category learning
使用眼动追踪和计算模型来理解类别学习期间注意力的动态分配
  • 批准号:
    327301-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Serious games platform design for training novice to expert level rapidly and effectively in complex perceptual tasks
严肃的游戏平台设计,可在复杂的感知任务中快速有效地将新手训练到专家水平
  • 批准号:
    419125-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Selective processing of features, dimensions & feedback in human category learning
特征、尺寸的选择性处理
  • 批准号:
    327301-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Selective processing of features, dimensions & feedback in human category learning
特征、尺寸的选择性处理
  • 批准号:
    327301-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Selective processing of features, dimensions & feedback in human category learning
特征、尺寸的选择性处理
  • 批准号:
    327301-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Selective processing of features, dimensions & feedback in human category learning
特征、尺寸的选择性处理
  • 批准号:
    327301-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Selective processing of features, dimensions & feedback in human category learning
特征、尺寸的选择性处理
  • 批准号:
    327301-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
引入昆虫复视机制的粒子滤波算法及其视觉伺服应用研究
  • 批准号:
    61175096
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
炎症因子调控干眼病眼表黏蛋白表达的分子机制
  • 批准号:
    81100636
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
补偿性还是非补偿性规则:探析风险决策的行为与神经机制
  • 批准号:
    31170976
  • 批准年份:
    2011
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Understanding the Relationship of Covert and Overt Attention Using Concurrent EEG and Eye Tracking
职业:使用并发脑电图和眼动追踪了解隐性注意力和显性注意力的关系
  • 批准号:
    2345898
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Fall Prediction Training System using Eye Tracking Measurement Device
使用眼动追踪测量设备的跌倒预测训练系统
  • 批准号:
    23K11951
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
  • 批准号:
    10696649
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Exploring the relationship between L2 reading competence and emotion and cognitive load using eye tracking and galvanic skin response
使用眼动追踪和皮肤电反应探索二语阅读能力与情绪和认知负荷之间的关系
  • 批准号:
    23K00761
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a New Automatic Visual Acuity Testing Device Using Eye-Tracking Analysis for Infants
利用婴儿眼动追踪分析开发新型自动视力测试设备
  • 批准号:
    23K02275
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Validation of Response Time Methodology as a Novel Measure of Noticing in Second Language Acquisition Research Using Eye-Tracking
响应时间方法作为使用眼动追踪的第二语言习得研究中新的注意测量方法的验证
  • 批准号:
    23K00678
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study of Cognitive Processes in Investor Decision Making Using Eye Tracking
使用眼动追踪研究投资者决策中的认知过程
  • 批准号:
    22H00888
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cognitive Science to Radiology: Using EEG and Eye-tracking to Determine Why, How, and When Novices and Radiologists Miss Signs of Breast Cancer in Multiple-abnormality Mammography and Tomosynthesis
从认知科学到放射学:使用脑电图和眼动追踪来确定新手和放射科医生在多异常乳房 X 线摄影和断层合成中错过乳腺癌迹象的原因、方式和时间
  • 批准号:
    10525777
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Uncovering cell type-specific prefrontal neural mechanisms of visuospatial selective attention in freely behaving mice using a high-throughput touchscreen-based training system
使用基于高通量触摸屏的训练系统揭示自由行为小鼠视觉空间选择性注意的细胞类型特异性前额神经机制
  • 批准号:
    10652656
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Cognitive Science to Radiology: Using EEG and Eye-tracking to Determine Why, How, and When Novices and Radiologists Miss Signs of Breast Cancer in Multiple-abnormality Mammography and Tomosynthesis
从认知科学到放射学:使用脑电图和眼动追踪来确定新手和放射科医生在多异常乳房 X 线摄影和断层合成中错过乳腺癌迹象的原因、方式和时间
  • 批准号:
    10687151
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了