Towards new solution techniques in mathematical programming with scenarios
迈向场景数学规划的新解决技术
基本信息
- 批准号:342368-2012
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Operational research now occupies an important place in research and industrial world. Along with the development of computational capacities, researchers and practitioners are more concerned about the optimization of operational processes, or the estimation of predictive models. Such models however suffer from many underlying simplifications, a major one being the assumption that all parameters are perfectly known. This is unfortunately rarely true, and a growing interest exists to incorporate uncertainty in mathematical problems. This allows to produce more flexible and robust solutions, as they better take changing conditions into account. The operational decisions can greatly differ when such an uncertainty is taken into account. However, the modeling task is then much more complex, and numerical efforts are more costly. The purpose of this proposal is to explore developments for algorithms in stochastic and dynamic programming, and to apply them to various fields. We focus on uncertainty modeled by scenarios, that represents a sequence of possible outcomes. We first study new developments in multistage stochastic programming, in order to propose faster while accurate techniques, capitalizing on the integration of ideas originally proposed in nonlinear programming. As a main application, we consider the hydroelectric generation, that is dependent of uncertain water intputs. A better management can lead to cost savings, a larger production capacity, and also a reduced impact of environment. Secondly, we consider dynamic discrete choice models, describing people choices among a finite set of alternative, but instead of studying standard punctual models, we integrate how people plan decisions over a time horizon. We apply the ideas to the description of consumers behavior, and we also consider the sequence of decisions made in a traffic network when selecting a road between two points. All these problems require efficient estimation techniques, and we develop new strategies for the underlying optimization algorithms.
运筹学在研究和工业界占有重要的地位。沿着计算能力的发展,研究者和实践者更加关注操作过程的优化,或者预测模型的估计。然而,这些模型受到许多潜在的简化,其中一个主要的假设是所有参数都是完全已知的。不幸的是,这很少是真的,并且越来越多的人对将不确定性纳入数学问题中感兴趣。这可以产生更灵活和更强大的解决方案,因为它们可以更好地考虑不断变化的条件。当考虑到这种不确定性时,业务决策可能会大不相同。然而,建模任务要复杂得多,数值工作的成本也更高。本提案的目的是探索随机和动态规划算法的发展,并将其应用于各个领域。我们专注于通过场景建模的不确定性,这些场景代表了一系列可能的结果。我们首先研究多阶段随机规划的新发展,以提出更快而准确的技术,利用最初在非线性规划中提出的想法的整合。作为一个主要的应用,我们考虑水力发电,这是依赖于不确定的水输入。更好的管理可以节省成本,提高生产能力,并减少对环境的影响。其次,我们考虑动态离散选择模型,描述人们的选择之间的一组有限的替代品,但不是研究标准的准时模型,我们整合人们如何计划在一个时间范围内的决策。我们应用的想法来描述消费者的行为,我们也考虑了在交通网络中选择两点之间的道路时所做的决定的顺序。所有这些问题都需要有效的估计技术,我们开发的基础优化算法的新策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bastin, Fabian其他文献
Dynamic discrete choice model for railway ticket cancellation and exchange decisions
- DOI:
10.1016/j.tre.2017.12.004 - 发表时间:
2018-02-01 - 期刊:
- 影响因子:10.6
- 作者:
Cirillo, Cinzia;Bastin, Fabian;Hetrakul, Pratt - 通讯作者:
Hetrakul, Pratt
Bastin, Fabian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bastin, Fabian', 18)}}的其他基金
Second-order Hessian-free methods for statistical learning and stochastic optimization
用于统计学习和随机优化的二阶无 Hessian 方法
- 批准号:
RGPIN-2022-04400 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
On the exploitation of uncertainty in exact and approximate optimization
关于精确和近似优化中不确定性的利用
- 批准号:
RGPIN-2017-05798 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
On the exploitation of uncertainty in exact and approximate optimization
关于精确和近似优化中不确定性的利用
- 批准号:
RGPIN-2017-05798 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
On the exploitation of uncertainty in exact and approximate optimization
关于精确和近似优化中不确定性的利用
- 批准号:
RGPIN-2017-05798 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Development of demand forecasting and inventory management models in the alcohol market
酒类市场需求预测和库存管理模型的开发
- 批准号:
528211-2018 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Engage Grants Program
On the exploitation of uncertainty in exact and approximate optimization
关于精确和近似优化中不确定性的利用
- 批准号:
RGPIN-2017-05798 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Développement de modèles alternatifs de risque de crédits avec des réseaux artificiels de neurones
神经元人工研究风险的替代模型的开发
- 批准号:
521783-2017 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Engage Grants Program
On the exploitation of uncertainty in exact and approximate optimization
关于精确和近似优化中不确定性的利用
- 批准号:
RGPIN-2017-05798 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Towards new solution techniques in mathematical programming with scenarios
迈向场景数学规划的新解决技术
- 批准号:
342368-2012 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Towards new solution techniques in mathematical programming with scenarios
迈向场景数学规划的新解决技术
- 批准号:
342368-2012 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
脊髓新鉴定SNAPR神经元相关环路介导SCS电刺激抑制恶性瘙痒
- 批准号:82371478
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
tau轻子衰变与新物理模型唯象研究
- 批准号:11005033
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
HIV gp41的NHR区新靶点的确证及高效干预
- 批准号:81072676
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
强子对撞机上新物理信号的多轻子末态研究
- 批准号:10675110
- 批准年份:2006
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Acceptability, user experience and effect of a new mobile app, 'OUPS!', a FemTech solution designed for the treatment of urinary incontinence in menopausal women: a mixed method study
新移动应用程序“OUPS!”的可接受性、用户体验和效果,这是一种专为治疗更年期女性尿失禁而设计的 FemTech 解决方案:一项混合方法研究
- 批准号:
486903 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Operating Grants
Locblock turning a plastic and non-recyclable textile waste issue into a housing solution: Phase 1 - Develop a new fire-rated and structural recycled plastic
Locblock 将塑料和不可回收的纺织废物问题转化为住房解决方案:第一阶段 - 开发新的防火和结构回收塑料
- 批准号:
10074894 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Grant for R&D
Towards an integrated analytics solution to creating a spatially-resolved single-cell multi-omics brain atlas
寻求集成分析解决方案来创建空间解析的单细胞多组学大脑图谱
- 批准号:
10724843 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Developing a new aspiration catheter solution for the treatment of large and medium vessel occlusions
开发用于治疗大中型血管闭塞的新型抽吸导管解决方案
- 批准号:
10699636 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Proteomic Analysis of Implant Surfaces in Athroplasty Failure
关节置换术失败中植入物表面的蛋白质组学分析
- 批准号:
10623873 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
New Motion Labs: Mechanical wear rig and computer model to evaluate lifetime performance of Enduo, a revolutionary power transmission solution for e-mobility
新运动实验室:用于评估 Enduo 生命周期性能的机械磨损装置和计算机模型,Enduo 是电动汽车的革命性动力传输解决方案
- 批准号:
10073625 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Collaborative R&D
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Levelling-up the business reach of UK SME creative agencies through a one-stop new business generation solution
通过一站式新业务生成解决方案提升英国中小企业创意机构的业务范围
- 批准号:
10068480 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Collaborative R&D
Mean-square atomic displacement - a new descriptor of solid-solution strengthening (from dilute to high-entropy alloys)
均方原子位移 - 固溶强化的新描述符(从稀合金到高熵合金)
- 批准号:
22H00262 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A New Concept: Fully-Automated, Fully-Recyclable Solution for Luxury Packaging Tubes
新概念:豪华包装管的全自动、完全可回收解决方案
- 批准号:
10023867 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Collaborative R&D