Hedging derivatives: from finance to actuarial science
对冲衍生品:从金融到精算科学
基本信息
- 批准号:355946-2013
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The pricing, hedging and risk management of financial and insurance products have been key objects of study in over two decades. Although tremendous research efforts have addressed important aspects, there are still 'puzzles' yet to be solved. This research project focus on two main strands from the financial econometrics and actuarial science literature.
The first part of the project investigates the pricing and hedging of financial derivatives, in particular options and volatility derivatives. Although a vast majority of the mathematical finance literature examines these in continuous time, mainly due to the tractability offered by this setup, quantities of interest are in general sampled at fixed dates and therefore, a discrete-time setting might be more appropriate. In this project we develop new methods for pricing and hedging of options and variance swaps based on a broad class of non-linear time series models and we illustrate the interplay with their continuous time limits, by studying the convergence between the corresponding quantities of interest. We further plan to investigate how these methods can be applied to hedging insurance products.
In the second part of the proposal, we explore one of the major challenges faced by an insurance company regarding the quantification of its minimum required capital and its optimal investment into a well-diversified portfolio of financial assets. Motivated by the Solvency II Directives, we propose new optimization problems for non-life insurance companies, with different solvency constraints imposed by regulators. These optimization problems will be implemented in both static, and dynamic settings.
金融和保险产品的定价、套期保值和风险管理是近二十年来金融和保险研究的重点。虽然巨大的研究努力已经解决了重要的方面,仍然有“难题”尚未解决。这个研究项目集中在金融计量经济学和精算学文献的两个主要方面。
该项目的第一部分调查金融衍生工具,特别是期权和波动性衍生工具的定价和对冲。虽然绝大多数数学金融文献在连续时间内研究这些问题,主要是由于这种设置提供的易处理性,但利息的数量通常是在固定日期采样的,因此,离散时间设置可能更合适。在这个项目中,我们开发了新的方法,定价和对冲的期权和方差互换的基础上广泛的一类非线性时间序列模型,我们说明了它们的连续时间限制的相互作用,通过研究相应的数量之间的收敛性的兴趣。我们计划进一步研究如何将这些方法应用于对冲保险产品。
在提案的第二部分,我们探讨了保险公司面临的主要挑战之一,即量化其最低资本要求,以及将其最佳投资于多样化的金融资产组合。出于偿付能力II指令,我们提出了新的优化问题的非寿险公司,不同的偿付能力约束的监管机构。这些优化问题将在静态和动态设置中实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Badescu, Alexandru其他文献
Badescu, Alexandru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Badescu, Alexandru', 18)}}的其他基金
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Hedging derivatives: from finance to actuarial science
对冲衍生品:从金融到精算科学
- 批准号:
355946-2013 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Hedging derivatives: from finance to actuarial science
对冲衍生品:从金融到精算科学
- 批准号:
355946-2013 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Hedging derivatives: from finance to actuarial science
对冲衍生品:从金融到精算科学
- 批准号:
355946-2013 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Hedging derivatives: from finance to actuarial science
对冲衍生品:从金融到精算科学
- 批准号:
355946-2013 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Pricing and hedging financial derivatives in incomplete markets
不完全市场中金融衍生品的定价和对冲
- 批准号:
355946-2008 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Unravelling the structural rules of antiperovskites and their derivatives
揭示反钙钛矿及其衍生物的结构规则
- 批准号:
23K23045 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nitrosation and Nitration Reactions of the Radical Cations of Guanine, 8-Oxoguanine and their Derivatives by NOx: Radical-radical Interactions at Multiple Electron Configurations
鸟嘌呤、8-氧代鸟嘌呤及其衍生物的自由基阳离子与 NOx 的亚硝化和硝化反应:多电子构型下的自由基-自由基相互作用
- 批准号:
2350109 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Support for the effective introduction and use of teaching portfolios and their derivatives
支持教学档案及其衍生品的有效引入和使用
- 批准号:
23H00977 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of self-colored biomass plastics composed of only cellulose derivatives
仅由纤维素衍生物组成的自着色生物质塑料的开发
- 批准号:
23K13998 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Hexagonal Perovskite Derivatives for Next-Generation Ceramic Fuel Cells
用于下一代陶瓷燃料电池的六方钙钛矿衍生物
- 批准号:
EP/X010422/1 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Research Grant
Sequencing the Mono-Methylated Derivatives of Cytidine
胞苷单甲基化衍生物的测序
- 批准号:
10581093 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Metallo-Porphyrin Carbon nanocomposite: Emerging Material for Biomass to Energy and Fue l derivatives
金属卟啉碳纳米复合材料:用于生物质能源和燃料衍生物的新兴材料
- 批准号:
22KF0155 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Analysis of synthetic derivatives with reduced lipophilicity as candidate potentiators towards better treatment alternatives for Cystic Fibrosis
分析亲脂性降低的合成衍生物作为候选增效剂,以获得更好的囊性纤维化治疗替代方案
- 批准号:
481159 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Study on entropy of gravitational theory with higher derivatives
高阶导数引力理论熵的研究
- 批准号:
23K03422 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regulation and function of subcellular RNA localization in neural crest cells and their derivatives
神经嵴细胞及其衍生物亚细胞RNA定位的调控和功能
- 批准号:
10739280 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别: