Topics on discrete-time stochastic volatility models with applications in finance and insurance

离散时间随机波动率模型及其在金融和保险中的应用主题

基本信息

  • 批准号:
    RGPIN-2018-04746
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The pricing and hedging of financial and insurance products have been key objects of study in over two decades. Although tremendous research efforts have addressed important aspects, there are still 'puzzles' yet to be solved. This research project focuses on topics selected from the financial econometrics and mathematical finance literature.******Volatility trading has recently become almost as important as option trading, as daily volumes of volatility trading have recently become larger than daily volumes of S&P 500 option trading. Variance swap contracts are the building blocks of volatility derivatives. Although a vast majority of the mathematical finance literature examines the modelling of financial assets and pricing of volatility derivatives in continuous-time (mainly due to the tractability offered by this setup) variance swaps are in practice sampled at fixed dates and therefore, a discrete-time setting might be more appropriate. The following summarizes my future research directions. ******In the first part of this proposal, I plan to study the relationship between discrete and continuous time pricing models, by investigating the weak convergence of several popular affine and non-affine models such as the Generalized Autoregressive Conditional Heteroskedastic (GARCH) family and autoregressive Stochastic Volatility (SV) models. These results will be derived in both a univariate and multivariate setting, and applications to pricing European and American options will be discussed. One of the goals of this exercise, is to identify new pricing models and strategies which make use of the advantages of the non-affine structure, when fitting financial asset data, and the affine properties when pricing derivatives. ******In the second part of the proposal, I intend to look at novel pricing methodologies for variance swaps when the sampling is performed at discrete time points. Using the convergence results computed in the first part, I aim to derive new formulas for the discretely sampled variance swaps, when the underlying asset is modelled in continuous time, which is not possible following a direct calculation. Using real market quotes for variance swaps, I plan to construct models which fit well their term structure. For example, in the option pricing theory it is a well-known fact that adding jumps to a stochastic volatility models only helps in fitting the short-term out-of-money contracts, and therefore it will be interesting to test if that is also the case for variance swaps. I believe the proposed research plan will bring several important contributions to the modelling and pricing and hedging of financial derivatives, in particular volatility derivatives.
金融保险产品的定价和套期保值是近二十年来金融保险研究的重要课题。虽然巨大的研究努力已经解决了重要的方面,仍然有“难题”尚未解决。本研究项目的重点是从金融计量经济学和数学金融文献中选择的主题。波动率交易最近变得几乎与期权交易一样重要,因为波动率交易的日交易量最近已经超过了标准普尔500指数期权交易的日交易量。方差互换合约是波动性衍生品的基石。虽然绝大多数的数学金融文献研究了金融资产的建模和连续时间波动率衍生品的定价(主要是由于这种设置提供的易处理性),但方差互换在实践中是在固定日期采样的,因此,离散时间设置可能更合适。下面总结了我未来的研究方向。** 在本提案的第一部分,我计划研究离散和连续时间定价模型之间的关系,通过研究几个流行的仿射和非仿射模型的弱收敛,如广义自回归条件异方差(GARCH)家族和自回归随机波动率(SV)模型。这些结果将在一个单变量和多变量的设置,并将讨论应用到定价欧洲和美国的选项。本练习的目标之一是确定新的定价模型和策略,这些模型和策略在拟合金融资产数据时利用非仿射结构的优势,在为衍生品定价时利用仿射属性。** 在建议书的第二部分,我打算研究在离散时间点进行抽样时方差互换的新定价方法。利用第一部分中计算的收敛结果,我的目标是推导出离散采样方差互换的新公式,当标的资产在连续时间内建模时,这是不可能直接计算的。使用方差互换的真实的市场报价,我计划构建适合其期限结构的模型。例如,在期权定价理论中,一个众所周知的事实是,在随机波动率模型中添加跳跃只有助于拟合短期价外合约,因此,检验方差互换是否也是这种情况将是有趣的。我相信拟议的研究计划将为金融衍生工具,特别是波动性衍生工具的建模、定价和对冲带来几个重要贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Badescu, Alexandru其他文献

Badescu, Alexandru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Badescu, Alexandru', 18)}}的其他基金

Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Hedging derivatives: from finance to actuarial science
对冲衍生品:从金融到精算科学
  • 批准号:
    355946-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Hedging derivatives: from finance to actuarial science
对冲衍生品:从金融到精算科学
  • 批准号:
    355946-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Hedging derivatives: from finance to actuarial science
对冲衍生品:从金融到精算科学
  • 批准号:
    355946-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Hedging derivatives: from finance to actuarial science
对冲衍生品:从金融到精算科学
  • 批准号:
    355946-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Hedging derivatives: from finance to actuarial science
对冲衍生品:从金融到精算科学
  • 批准号:
    355946-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Pricing and hedging financial derivatives in incomplete markets
不完全市场中金融衍生品的定价和对冲
  • 批准号:
    355946-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

离散谱聚合与谱廓受限的传输理论与技术的研究
  • 批准号:
    60972057
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

LEAPS-MPS: Time-Discrete Regularized Variational Model for Brittle Fracture in Novel Strain-Limiting Elastic Solids
LEAPS-MPS:新型应变限制弹性固体中脆性断裂的时间离散正则化变分模型
  • 批准号:
    2316905
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Multi-Dimensional Religiosity and Pregnancy-Related Behaviors during the Transition to Adulthood
向成年过渡期间的多维宗教信仰和怀孕相关行为
  • 批准号:
    10649080
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Maternal gut microbiota in fetal programming of neurodevelopment and related disorders
母体肠道微生物群在胎儿神经发育和相关疾病编程中的作用
  • 批准号:
    10668634
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Peripheral Artery Disease: Long-term Survival & Outcomes Study (PEARLS)
外周动脉疾病:长期生存
  • 批准号:
    10734991
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Role of the kappa opioid receptor system in learning and substance use disorders
kappa阿片受体系统在学习和物质使用障碍中的作用
  • 批准号:
    10750800
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Construction and systematization of unified control theory for discrete-time stochastic systems
离散时间随机系统统一控制理论的构建和系统化
  • 批准号:
    23H01433
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Designing a mobile intervention for dysregulated eating and weight gain prevention in adolescents
设计针对青少年饮食失调和体重增加预防的移动干预措施
  • 批准号:
    10711350
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Bayesian Mortality Estimation from Disparate Data Sources
来自不同数据源的贝叶斯死亡率估计
  • 批准号:
    10717177
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Novel Algorithm and Data Strategies to detect and Predict atrial fibrillation for post-stroke patients (NADSP)
用于检测和预测中风后患者心房颤动的新算法和数据策略 (NADSP)
  • 批准号:
    10561108
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Analysis of Alzheimer's disease studies that feature truncated or interval-censored covariates
对具有截断或区间删失协变量的阿尔茨海默病研究的分析
  • 批准号:
    10725225
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了