Optimization problems on geometric graphs
几何图的优化问题
基本信息
- 批准号:386206-2011
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphs are the most general model for computer and communication networks, roads, waterways, and any
general infrastructure. Naturally many optimization problems arise. For example, what is the most efficient
route for a packet through the Internet, or for a shipment between two locations. The efficiency itself can be
measured in terms of time, cost, number of intermediary nodes used, etc. The underlying problem in all such
cases is an optimization problem on graphs. We study optimization problems on graphs. The goal of this
research is to develop efficient algorithmic techniques, and data structures that allow efficient solutions for the
problems considered. We concentrate on geometric graphs, i.e. graphs that have certain structure derived from
or related to the geometric spaces. These are graphs embedded in metric spaces, graphs with a metric imposed
on their edges, or graphs whose edges have certain geometric properties. For example, the Relative
Neighbourhood Graph (RNG) of a set of points has applications to wireless routing, clustering, etc. One of the
most commonly used and studied geometric graphs are the triangulations. They are applied to geographic
information systems (including GPS), computer graphics and visualization, medical imaging and
computer-guided surgery, meshing and modeling, just to mention a few. Every application requires
triangulations with certain quality and properties. It is also very important that these are efficiently computable,
especially in time-sensitive applications. Thus, our ability to perform certain tasks quickly and efficiently relies
upon efficient algorithms for constructing optimal triangulations. Finally, it is very important to study the
general properties of geometric graphs in order to advance our conceptual understanding of the computational
paradigms.
图是计算机和通信网络、道路、水路以及任何
一般基础设施。自然会出现许多优化问题。例如,什么是最有效的
通过互联网为数据包或两个地点之间的装运提供路由。效率本身可以是
在时间、成本、使用的中间节点的数量等方面测量。
cases是图上的优化问题。我们研究图上的优化问题。这个目标
研究的目的是开发有效的算法技术和数据结构,使有效的解决方案,
考虑的问题。我们专注于几何图,即具有某种结构的图,
或与几何空间有关。这些是嵌入在度量空间中的图,
或者边具有某些几何性质的图。例如,相对
一组点的邻域图(RNG)应用于无线路由、聚类等。
最常用和研究的几何图形是三角剖分。它适用于地理
信息系统(包括GPS)、计算机图形和可视化、医学成像和
计算机引导的手术,网格和建模,仅举几例。每个应用程序都需要
具有一定质量和性质的三角剖分。同样重要的是,这些是可有效计算的,
特别是在时间敏感的应用中。因此,我们快速有效地执行某些任务的能力依赖于
基于构造最优三角剖分的有效算法。最后,研究
几何图形的一般性质,以促进我们对计算的概念性理解。
范例
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vassilev, Tzvetalin其他文献
Vassilev, Tzvetalin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vassilev, Tzvetalin', 18)}}的其他基金
Optimization problems on geometric graphs
几何图的优化问题
- 批准号:
386206-2011 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Optimization problems on geometric graphs
几何图的优化问题
- 批准号:
386206-2011 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Optimization problems on geometric graphs
几何图的优化问题
- 批准号:
386206-2011 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Optimization problems on geometric graphs
几何图的优化问题
- 批准号:
386206-2011 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
- 批准号:
2247096 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Fine-Grained Complexity of Geometric Optimization Problems
几何优化问题的细粒度复杂性
- 批准号:
564219-2021 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
University Undergraduate Student Research Awards
AF:Small:Geometric Optimization Problems for Routing, Searching, and Coverage in the Face of Uncertainty
AF:Small:面对不确定性时路由、搜索和覆盖的几何优化问题
- 批准号:
2007275 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Pivoting Algorithms and Geometric Optimization Problems
旋转算法和几何优化问题
- 批准号:
RGPIN-2014-06371 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Pivoting Algorithms and Geometric Optimization Problems
旋转算法和几何优化问题
- 批准号:
RGPIN-2014-06371 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
A Calculus for Non-Smooth Shape Optimization with Applications to Geometric Inverse Problems
非光滑形状优化微积分及其在几何反问题中的应用
- 批准号:
314150341 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Priority Programmes
Fixed-parameter tractability for geometric optimization problems
几何优化问题的固定参数易处理性
- 批准号:
EP/N029143/1 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Research Grant
Pivoting Algorithms and Geometric Optimization Problems
旋转算法和几何优化问题
- 批准号:
RGPIN-2014-06371 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Pivoting Algorithms and Geometric Optimization Problems
旋转算法和几何优化问题
- 批准号:
RGPIN-2014-06371 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Optimization problems on geometric graphs
几何图的优化问题
- 批准号:
386206-2011 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual