Fixed-parameter tractability for geometric optimization problems
几何优化问题的固定参数易处理性
基本信息
- 批准号:EP/N029143/1
- 负责人:
- 金额:$ 12.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many real-world problems can be formulated as geometric optimization problems. These are combinatorial optimization problems restricted to a geometric setting, where the objective is to maximize or minimize a function of a number of variables subject to a large number of constraints induced by a given collection of geometric input objects. These include, for example, problems on geometric graphs, geometric packing and covering, robot motion planning, and geometric pattern analysis.We propose to systematically study the parameterized complexity of computationally hard (NP-hard) geometric optimization problems. So far, the main approach for dealing with such problems has been approximation algorithms. However, such algorithms often have prohibitively high running times even for small error sizes while many geometric problems have been shown to be inapproximable. Parameterized complexity on the other hand provides a framework for a more refined, `multi-dimensional' analysis of hard combinatorial problems. It measures their complexity in terms of one or more parameters in addition to the traditional input size. In concrete applications parameters are hoped to take relatively small values, resulting in practical (efficient) algorithms. Geometric problems often come with such parameters, which, in a sense, measure properties of the input objects. In this project, we would like to develop new techniques, especially by combining methods from both fields of parameterized complexity and computational geometry, and use these techniques to tackle concrete fundamental problems from various application areas, such as discrete optimization, pattern analysis, sensor networks, and art galleries.
许多现实世界的问题都可以表述为几何优化问题。这些是限制于几何设置的组合优化问题,其目标是最大化或最小化受给定几何输入对象集合引起的大量约束的许多变量的函数。例如,这些问题包括几何图形、几何填充和覆盖、机器人运动规划和几何图案分析。我们提出系统地研究计算困难(NP-hard)几何优化问题的参数化复杂性。到目前为止,处理这类问题的主要方法是近似算法。然而,这样的算法往往有过高的运行时间,即使小的误差大小,而许多几何问题已被证明是不可近似的。另一方面,参数化复杂性为复杂组合问题的更精细的“多维”分析提供了一个框架。除了传统的输入大小之外,它还根据一个或多个参数来衡量它们的复杂性。在具体应用中,希望参数取相对较小的值,从而得到实用(高效)的算法。几何问题通常伴随着这样的参数,从某种意义上说,这些参数测量了输入对象的属性。在这个项目中,我们希望开发新的技术,特别是通过结合参数化复杂性和计算几何两个领域的方法,并使用这些技术来解决来自各个应用领域的具体基本问题,如离散优化、模式分析、传感器网络和艺术画廊。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Orthogonal Terrain Guarding is NP-complete
正交地形防护是 NP 完全的
- DOI:10.48550/arxiv.1710.00386
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Bonnet
- 通讯作者:Bonnet
On the parameterized complexity of red-blue points separation
红蓝点分离的参数化复杂度
- DOI:10.20382/jocg.v10i1a7
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bonnet E
- 通讯作者:Bonnet E
QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs
圆盘图上最大团的 QPTAS 和次指数算法
- DOI:10.48550/arxiv.1712.05010
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Bonnet
- 通讯作者:Bonnet
EPTAS and Subexponential Algorithm for Maximum Clique on Disk and Unit Ball Graphs
圆盘和单位球图上最大团的 EPTAS 和次指数算法
- DOI:10.1145/3433160
- 发表时间:2021
- 期刊:
- 影响因子:2.5
- 作者:Bonamy M
- 通讯作者:Bonamy M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Giannopoulos其他文献
Delineation of the functional and structural properties of the glutathione transferase family from the plant pathogen Erwinia carotovora
植物病原体胡萝卜软腐欧文氏菌谷胱甘肽转移酶家族的功能和结构特性的描述
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.9
- 作者:
Christina Theoharaki;Evangelia G. Chronopoulou;D. Vlachakis;F. Ataya;Panagiotis Giannopoulos;Sofia Maurikou;Katholiki Skopelitou;A. Papageorgiou;N. Labrou - 通讯作者:
N. Labrou
Estimation of CAR processes observed in noise using Bayesian inference
使用贝叶斯推理估计噪声中观察到的 CAR 过程
- DOI:
10.1109/icassp.2001.940322 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Panagiotis Giannopoulos;S. Godsill - 通讯作者:
S. Godsill
Effects of μ‐opioid receptor modulation on the hippocampal network activity of sharp wave and ripples
μ-阿片受体调节对海马尖波和波纹网络活动的影响
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:7.3
- 作者:
Panagiotis Giannopoulos;C. Papatheodoropoulos - 通讯作者:
C. Papatheodoropoulos
Equitable Discovery and Implementation of Pharmacogenomic (PGx) Testing in Cancer Care: Recommendations
癌症治疗中药物基因组 (PGx) 测试的公平发现和实施:建议
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Skokou;K. Karamperis;Margarita;E. Tsermpini;Maria;Stavroula Siamoglou;P. Ferentinos;M. Bartsakoulia;T. Katsila;C. Mitropoulou;G. Patrinos;Konstantinos Assimakopoulos;E. Georgila;Philippos Gourzis;Aikaterini Karaivazoglou;Olympia Prodromaki;George Rigas;Georgia Voukelatou;Vassiliki Zacharopoulou;Evangelia Barba;Konstantina Chalikiopoulou;Dimitra Dedousi;Georgiadis Emmanouil;Panagiotis Giannopoulos;Ouliana Ivantsik;Marina Kalogeropoulou;Manoussos E. Kambouris;F. Kanellakis;Alexandra Kolliopoulou;Panagiotis Kollios;Zoi Kordou;Ioannis Liopetas;Efrossyni Mendrinou;K. Mitropoulos;Georgia;Theano Stamopoulou;Andreas Stathoulias;Apostolos Stratopoulos;Athina Tsikrika;A. Douzenis;Charilaos Gerassimou;Maria;A. Vozikis - 通讯作者:
A. Vozikis
Panagiotis Giannopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 12.21万 - 项目类别:
Research Grant
ERI: Intelligent Modeling and Parameter Selection in Distributed Optimization for Power Networks
ERI:电力网络分布式优化中的智能建模和参数选择
- 批准号:
2347120 - 财政年份:2024
- 资助金额:
$ 12.21万 - 项目类别:
Standard Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
- 批准号:
BB/Y51388X/1 - 财政年份:2024
- 资助金额:
$ 12.21万 - 项目类别:
Research Grant
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Parameter identification with optimal experimental design for engineering biology
工程生物学优化实验设计的参数识别
- 批准号:
EP/Y00342X/1 - 财政年份:2024
- 资助金额:
$ 12.21万 - 项目类别:
Research Grant
Neuromodulators constrain the activity of neurons and neuronal networks by restricting their parameter space
神经调节器通过限制神经元和神经元网络的参数空间来限制其活动
- 批准号:
2320895 - 财政年份:2024
- 资助金额:
$ 12.21万 - 项目类别:
Continuing Grant
Epidemiological modelling of behavioural impact on Mpox mitigation strategies
行为对 Mpox 缓解策略影响的流行病学模型
- 批准号:
481271 - 财政年份:2023
- 资助金额:
$ 12.21万 - 项目类别:
Operating Grants
Development of performance parameter optimization tools for automatic tuning
自动调优性能参数优化工具开发
- 批准号:
23K11126 - 财政年份:2023
- 资助金额:
$ 12.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
- 批准号:
10794448 - 财政年份:2023
- 资助金额:
$ 12.21万 - 项目类别:
Smart Cuff: Multi-Parameter Hemodynamic Monitoring via a Single Convenient Device
智能袖带:通过单个便捷设备进行多参数血流动力学监测
- 批准号:
10583061 - 财政年份:2023
- 资助金额:
$ 12.21万 - 项目类别: