Asymptotic geometry, filling functions, and non-positive curvature
渐近几何、填充函数和非正曲率
基本信息
- 批准号:399394-2011
- 负责人:
- 金额:$ 1.17万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I plan to study the large-scale geometry of groups and spaces. One way to study a space is to look at curves and discs. A space where every curve is the boundary of some disc is called simply connected. Even if you know that a space is simply connected, you may not know how big those discs are; in some spaces, there are short loops which can only be filled by very large discs. Problems like these, where one knows that something exists, but one wants to know how big it is, are problems in quantitative geometry.
I study what happens for longer and longer curves. The growth of these discs as the length of the curve increases gives one way to characterize the large-scale geometry of a space. This is especially interesting because it lets us study discrete objects, like graphs and groups, using the tools of geometry.
Another way to study the large-scale geometry of a space is to use its asymptotic cone. The asymptotic cone of a space is constructed by taking a scaling limit of the space; Misha Gromov described this process as looking at the space "from infinity". These spaces are often very symmetric and beautiful, but at the same time, they can have very complicated local geometry, because the scaling process packs all the complexity of the space into every small neighborhood. My research tries to unite the large-scale geometry of a space, seen through filling problems and geometric group theory, with the small-scale geometry of its asymptotic cone, seen through geometric measure theory.
我计划研究群体和空间的大尺度几何。 研究空间的一种方法是观察曲线和圆盘。 一个空间中的每一条曲线都是某个圆盘的边界,这个空间叫做单连通的。 即使你知道一个空间是单连通的,你也可能不知道这些圆盘有多大;在某些空间中,有一些短的环,只能由非常大的圆盘填充。 像这样的问题,人们知道某样东西存在,但想知道它有多大,是定量几何中的问题。
我研究的是越来越长的曲线。 随着曲线长度的增加,这些圆盘的增长提供了一种表征空间的大尺度几何形状的方法。 这是特别有趣的,因为它让我们研究离散的对象,如图和组,使用几何工具。
另一种研究空间的大尺度几何的方法是使用它的渐近锥。 空间的渐近锥是通过取空间的尺度极限来构造的; Misha Gromov将这个过程描述为“从无限远”看空间。 这些空间通常非常对称和美丽,但同时,它们可能具有非常复杂的局部几何形状,因为缩放过程将空间的所有复杂性打包到每个小邻域中。 我的研究试图通过填充问题和几何群论将空间的大尺度几何与其渐近锥的小尺度几何统一起来,通过几何测度论将其统一起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Young, Robert其他文献
Toward more efficient protein expression
- DOI:
10.1385/mb:34:2:151 - 发表时间:
2006-10-01 - 期刊:
- 影响因子:2.6
- 作者:
Kalwy, Stephan;Rance, James;Young, Robert - 通讯作者:
Young, Robert
The relative importance of family socioeconomic status and school-based peer hierarchies for morning cortisol in youth: an exporatory study.
- DOI:
10.1016/j.socscimed.2009.12.006 - 发表时间:
2010-04 - 期刊:
- 影响因子:5.4
- 作者:
West, Patrick;Sweeting, Helen;Young, Robert;Kelly, Shona - 通讯作者:
Kelly, Shona
The Relationship between Dietary Fiber Intake and Lung Function in the National Health and Nutrition Examination Surveys
- DOI:
10.1513/annalsats.201509-609oc - 发表时间:
2016-05-01 - 期刊:
- 影响因子:8.3
- 作者:
Hanson, Corrine;Lyden, Elizabeth;Young, Robert - 通讯作者:
Young, Robert
Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radiosurgery
- DOI:
10.1093/neuonc/not085 - 发表时间:
2013-09-01 - 期刊:
- 影响因子:15.9
- 作者:
Boothe, Dustin;Young, Robert;Beal, Kathryn - 通讯作者:
Beal, Kathryn
A longitudinal study of alcohol use and antisocial behaviour in young people.
- DOI:
10.1093/alcalc/agm147 - 发表时间:
2008-03 - 期刊:
- 影响因子:2.8
- 作者:
Young, Robert;Sweeting, Helen;West, Patrick - 通讯作者:
West, Patrick
Young, Robert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Young, Robert', 18)}}的其他基金
Topology and mechanism in self-immolation chemistry
自焚化学的拓扑和机制
- 批准号:
RGPIN-2018-06275 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Topology and mechanism in self-immolation chemistry
自焚化学的拓扑和机制
- 批准号:
RGPIN-2018-06275 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Topology and mechanism in self-immolation chemistry
自焚化学的拓扑和机理
- 批准号:
RGPIN-2018-06275 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Topology and mechanism in self-immolation chemistry
自焚化学的拓扑和机理
- 批准号:
RGPIN-2018-06275 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Topology and mechanism in self-immolation chemistry
自焚化学的拓扑和机理
- 批准号:
RGPIN-2018-06275 - 财政年份:2018
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic geometry, filling functions, and non-positive curvature
渐近几何、填充函数和非正曲率
- 批准号:
399394-2011 - 财政年份:2014
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Optimization of novel dual action prodrugs for treatment of osteoporosis
治疗骨质疏松症的新型双重作用前药的优化
- 批准号:
414137-2012 - 财政年份:2013
- 资助金额:
$ 1.17万 - 项目类别:
Collaborative Health Research Projects
Asymptotic geometry, filling functions, and non-positive curvature
渐近几何、填充函数和非正曲率
- 批准号:
399394-2011 - 财政年份:2013
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Optimization of novel dual action prodrugs for treatment of osteoporosis
治疗骨质疏松症的新型双重作用前药的优化
- 批准号:
414137-2012 - 财政年份:2012
- 资助金额:
$ 1.17万 - 项目类别:
Collaborative Health Research Projects
Proof of concept molecules and molecular probes in drug discovery
药物发现中的概念分子和分子探针的证明
- 批准号:
341724-2008 - 财政年份:2012
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Fellowship Award
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Continuing Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Continuing Grant