Topological insulators and superconductor - effects of disorder and interactions
拓扑绝缘体和超导体 - 无序和相互作用的影响
基本信息
- 批准号:402952-2012
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topology is a branch of mathematics that deals with the shape and connectivity of objects. Recently, the field of topology has intersected condensed matter physics and helped to define a new class of materials. These are topological insulators and superconductors. Their remarkable properties are a result of their unusual microscopic structure which displays non-trivial topology.
In particular, a topological insulator, is similar to a regular insulator in its bulk - it simply can not conduct electrons. On its surface, however, not only does it conduct electrons but it also does so without any dissipation. In the past few years many theoretical models and experimental systems that display this unusual phenomenon have been found.
A topological superconductor, is another example of a topological state of matter. It has been predicted to exist theoretically and the community is currently hard at work to realize this prediction experimentally. The amazing property of a topological superconductor is that it can support Majorana Fermions. These are peculiar particles that have been predicted in 1937 and have never been seen. A majorana fermion is its own antiparticle and in the topological superconductor may be used as a building block for quantum computation.
In my research I investigate these novel materials. One of my objectives is to propose a feasible way to realize a topological superconductor while my other objectives have to do with understanding topological insulators and superconductors. I describe these materials by theoretical models and take into account the effects of disorder and strong interactions.
拓扑学是数学的一个分支,研究对象的形状和连通性。 最近,拓扑学领域已经取代了凝聚态物理学,并帮助定义了一类新的材料。 它们是拓扑绝缘体和超导体。 它们的显着性能是由于其不寻常的微观结构,显示非平凡的拓扑结构。
特别是拓扑绝缘体,在体积上类似于常规绝缘体-它根本无法传导电子。 然而,在它的表面上,它不仅能传导电子,而且没有任何耗散。 在过去的几年里,许多理论模型和实验系统显示这种不寻常的现象已经被发现。
拓扑超导体,是物质拓扑状态的另一个例子。 它已经被预测在理论上存在,社区目前正在努力工作,以实现这一预测实验。 拓扑超导体的惊人性质是它可以支持马约拉纳费米子。 这些是在1937年就被预测到的奇特粒子,但从未被看到过。 马约拉纳费米子是它自己的反粒子,在拓扑超导体中可以用作量子计算的基石。
在我的研究中,我调查了这些新材料。 我的目标之一是提出一种可行的方法来实现拓扑超导体,而我的其他目标与理解拓扑绝缘体和超导体有关。 我描述这些材料的理论模型,并考虑到无序和强相互作用的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PeregBarnea, Tamar其他文献
PeregBarnea, Tamar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PeregBarnea, Tamar', 18)}}的其他基金
Topology and Superconductivity In and Out of Equilibrium
平衡态和非平衡态的拓扑和超导性
- 批准号:
RGPIN-2017-04700 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Topology and Superconductivity In and Out of Equilibrium
平衡态和非平衡态的拓扑和超导性
- 批准号:
RGPIN-2017-04700 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Topology and Superconductivity In and Out of Equilibrium
平衡态和非平衡态的拓扑和超导性
- 批准号:
RGPIN-2017-04700 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Topology and Superconductivity In and Out of Equilibrium
平衡态和非平衡态的拓扑和超导性
- 批准号:
RGPIN-2017-04700 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Topology and Superconductivity In and Out of Equilibrium
平衡态和非平衡态的拓扑和超导性
- 批准号:
RGPIN-2017-04700 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Topological insulators and superconductor - effects of disorder and interactions
拓扑绝缘体和超导体 - 无序和相互作用的影响
- 批准号:
402952-2012 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Topological insulators and superconductor - effects of disorder and interactions
拓扑绝缘体和超导体 - 无序和相互作用的影响
- 批准号:
402952-2012 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Topological insulators and superconductor - effects of disorder and interactions
拓扑绝缘体和超导体 - 无序和相互作用的影响
- 批准号:
402952-2012 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Topological insulators and unconventional superconductors beyond the clean, non-interacting limit
超越清洁、非相互作用极限的拓扑绝缘体和非常规超导体
- 批准号:
402952-2011 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Quantum computing and topological states of matter
量子计算和物质的拓扑态
- 批准号:
314340-2005 - 财政年份:2007
- 资助金额:
$ 1.82万 - 项目类别:
Postdoctoral Fellowships
相似海外基金
Bloch wave interferometry in semiconductors and correlated insulators
半导体和相关绝缘体中的布洛赫波干涉测量
- 批准号:
2333941 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Topological insulators and free fermions: from Hermitian to non-Hermitian
拓扑绝缘体和自由费米子:从厄米特到非厄米特
- 批准号:
DP240100838 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Projects
Mathematical study of topologies for higher-order topological insulators
高阶拓扑绝缘体拓扑的数学研究
- 批准号:
23K12966 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of ignition hazard of electrostatic discharges occurring between insulators
绝缘子间静电放电着火危险的研究
- 批准号:
23K13528 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Creation of a new-principle inductor "magnonic inductor" by magnetic excitation of magnetic insulators
通过磁绝缘体磁激励创建新原理电感器“磁振子电感器”
- 批准号:
23K17882 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
GCR: Rational Design of Topological Insulators using Atomically-Precise DNA Self-Assembly
GCR:利用原子精确的 DNA 自组装技术合理设计拓扑绝缘体
- 批准号:
2317843 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
- 批准号:
2306411 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Evaluation and application of charge to spin conversion in topological crystalline insulators
拓扑晶体绝缘体中电荷自旋转换的评价及应用
- 批准号:
22KJ1719 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Paired Radical States in Molecular Wires: 1D Topological Insulators and Beyond
分子线中的成对自由基态:一维拓扑绝缘体及其他
- 批准号:
2241180 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
CAREER: Correlated excited states of point defects in insulators
职业:绝缘体中点缺陷的相关激发态
- 批准号:
2237674 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant