Evolving under tasks of incomplete information: streaming and self play

在不完全信息任务下进化:流媒体和自玩

基本信息

  • 批准号:
    451239-2013
  • 负责人:
  • 金额:
    $ 6.41万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Tasks that only are only partially observable present unique challenges for machine learning in general and genetic programming (GP) in particular. The notion of a partially observable application will be considered from two specific application contexts of relevance to the partner organization. The first context is that of streaming data analysis under limited label availability. The goal is to begin with some small subset of labelled data representing the current status of a task, and then be able to recognize when the underlying nature of the non-stationary process generating the data stream has changed. On recognizing such a change in the stream's behaviour, the current GP solutions should selectively request labels for the data corresponding to the change. Decisions then need to be made to determine which GP individuals currently employed for detecting change / labelling the stream, should be updated or replaced. The second application context is that of learning to construct non-player character (NPC) through self play under a game of incomplete information. A NPC is computer based entity who appears in a game to provide additional interest for human players. In this work we are particularly interested in the case of NPC who appear in the game of poker. The goal however, is not to produce the strongest possible player, but to provide players who are complementary to the human players currently participating. Poker represents an interesting task domain because it is also based on incomplete information (no knowledge of the other player's cards), stochastic (cannot predict the order of card apparence) and the capability of opponent players is unknown. The stochastic nature of the task, lack of complete information and non-stationary nature of strategies adopted by other players all make the poker task particularly challenging from the perspective of machine learning.
仅部分可观察的任务通常对机器学习,特别是遗传编程(GP)提出了独特的挑战。部分可观察应用的概念将从与伙伴组织相关的两个具体应用环境中加以考虑。第一个上下文是在有限的标签可用性下的流数据分析。目标是开始与一些小的子集的标记数据表示当前的任务状态,然后能够识别的非平稳过程生成的数据流的基本性质发生了变化。在识别流的行为中的这种改变时,当前的GP解决方案应当选择性地请求用于对应于改变的数据的标签。然后需要做出决定,以确定目前用于检测变化/标记流的GP个体应该被更新或替换。 第二个应用背景是在不完全信息博弈下通过自我博弈学习构建非玩家角色(NPC)。NPC是基于计算机的实体,出现在游戏中为人类玩家提供额外的兴趣。在这项工作中,我们特别感兴趣的情况下,NPC谁出现在扑克游戏。然而,我们的目标并不是培养出最强的球员,而是提供与目前参与的人类球员互补的球员。扑克代表了一个有趣的任务领域,因为它也是基于不完整的信息(不知道其他玩家的卡),随机(无法预测卡出现的顺序)和对手玩家的能力是未知的。从机器学习的角度来看,任务的随机性、缺乏完整信息以及其他玩家所采用策略的非平稳性都使得扑克任务特别具有挑战性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heywood, Malcolm其他文献

Heywood, Malcolm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heywood, Malcolm', 18)}}的其他基金

Scaling Genetic Programming to Complex Reinforcement Learning Tasks
将遗传编程扩展到复杂的强化学习任务
  • 批准号:
    RGPIN-2020-04438
  • 财政年份:
    2022
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Discovery Grants Program - Individual
Scaling Genetic Programming to Complex Reinforcement Learning Tasks
将遗传编程扩展到复杂的强化学习任务
  • 批准号:
    RGPIN-2020-04438
  • 财政年份:
    2021
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Discovery Grants Program - Individual
Scaling Genetic Programming to Complex Reinforcement Learning Tasks
将遗传编程扩展到复杂的强化学习任务
  • 批准号:
    RGPIN-2020-04438
  • 财政年份:
    2020
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Discovery Grants Program - Individual
Permutation based task transfer for genetic programming
基于排列的遗传编程任务转移
  • 批准号:
    RGPIN-2015-06117
  • 财政年份:
    2019
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Discovery Grants Program - Individual
Coevolutionary automatic game content generation of physics and flighting style games
物理和飞行风格游戏的协同进化自动游戏内容生成
  • 批准号:
    499792-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Collaborative Research and Development Grants
Permutation based task transfer for genetic programming
基于排列的遗传编程任务转移
  • 批准号:
    RGPIN-2015-06117
  • 财政年份:
    2018
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Discovery Grants Program - Individual
Permutation based task transfer for genetic programming
基于排列的遗传编程任务转移
  • 批准号:
    RGPIN-2015-06117
  • 财政年份:
    2017
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Discovery Grants Program - Individual
Coevolutionary automatic game content generation of physics and flighting style games
物理和飞行风格游戏的协同进化自动游戏内容生成
  • 批准号:
    499792-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Collaborative Research and Development Grants
Permutation based task transfer for genetic programming
基于排列的遗传编程任务转移
  • 批准号:
    RGPIN-2015-06117
  • 财政年份:
    2016
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Discovery Grants Program - Individual
Coevolutionary automatic game content generation of physics and flighting style games
物理和飞行风格游戏的协同进化自动游戏内容生成
  • 批准号:
    499792-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

体硅下薄膜(TUB,Thinfilm Under Bulk)复合结构成型机理及其高性能器件研究
  • 批准号:
    61674160
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Human capital under multitasks and various abilities
多任务和多种能力下的人力资本
  • 批准号:
    22K01393
  • 财政年份:
    2022
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on decision making methods that makes mobile robots avoid risks on their tasks under uncertainty
移动机器人在不确定性条件下规避任务风险的决策方法研究
  • 批准号:
    20K04382
  • 财政年份:
    2020
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
OPTIONAL TASKS UNDER THE BIOTEAM #75N97020A00012-75N97020F00001
生物团队的可选任务
  • 批准号:
    10285818
  • 财政年份:
    2020
  • 资助金额:
    $ 6.41万
  • 项目类别:
Comparison between visually impaired athletes and sighted subjects under conditions using dynamic spatial cognitive tasks
使用动态空间认知任务条件下视障运动员和视力正常的受试者之间的比较
  • 批准号:
    16K21428
  • 财政年份:
    2016
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Relationship between cognitive resources and social skills under multiple simultaneous tasks
多个同时任务下认知资源与社交技能的关系
  • 批准号:
    15H06342
  • 财政年份:
    2015
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Evolving under tasks of incomplete information: streaming and self play
在不完全信息任务下进化:流媒体和自玩
  • 批准号:
    451239-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Collaborative Research and Development Grants
Evolving under tasks of incomplete information: streaming and self play
在不完全信息任务下进化:流媒体和自玩
  • 批准号:
    451239-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Collaborative Research and Development Grants
Accumbal Activity Under Drug and Non-Drug Rewarded Tasks
药物和非药物奖励任务下的累积活动
  • 批准号:
    7223691
  • 财政年份:
    2007
  • 资助金额:
    $ 6.41万
  • 项目类别:
Accumbal Activity Under Drug and Non-Drug Rewarded Tasks
药物和非药物奖励任务下的累积活动
  • 批准号:
    7388876
  • 财政年份:
    2007
  • 资助金额:
    $ 6.41万
  • 项目类别:
Analysis of blood flow in brain under various tasks of extremities with functional MRI
功能性MRI分析四肢各种任务下的脑血流
  • 批准号:
    15500394
  • 财政年份:
    2003
  • 资助金额:
    $ 6.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了