Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels

使用地面激光雷达评估树木和林分水平森林结构的方法开发

基本信息

  • 批准号:
    RGPIN-2014-04508
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Terrestrial LiDAR (Light Detection and Ranging) or TLiDAR is an instrument probing its surroundings with a hemispherical scan composed of several million points, each of which has a distance and a reflectance value. The resulting 3D cloud provides an explicit, although fuzzy, rendition of the surrounding objects. Even if TLiDAR technology is an important step forward in our ability to probe our environments, this tool has limitations that need to be overcome. These limitations grow with the complexity of the environment. Airborne LiDAR is widely used and the methods for data processing benefit from a large pool of publications and expertise worldwide. Conversely, studies and expertise on TLiDAR are much less predominant. Most studies using TLiDAR in forest environments developed algorithms from isolated trees or within a controlled environment like a plantation. There is a need for many new developments to take advantage of the capabilities of the TLiDAR in natural forest environments, particularly to support enhanced forest inventory. Thus this research program aims to develop the methods required to use TLiDAR in natural forest environments to estimate a large array of attributes, which either are not currently available in the forest inventory or are currently available but poorly measured. We also aim to develop procedures and algorithms to overcome the main limitations of TLiDAR in forest applications. I propose a research program that tackles the four categories of scientific questions related to the use of TLiDAR in natural forests: (1) overcoming the limitations of TLiDAR data, (2) developing new methods to measure tree/stand structure, (3) using LiDAR metrics for useful relationships in forest ecology, and (4) the spatial generalization of plot-level data to large area mapping. Firstly, the main limitation for the use of TLiDAR data in forestry is the occlusion effect, which results in blind zones behind opaque objects. The effect of occlusion in a complex environment like a forest is significant and highly spatially variable; consequently, it can seriously bias the results. Other limitations include multiscans georeference, the effect of wind, and data processing of very large datasets. One solution to handle TLiDAR limitations is the use of a voxel (3D cube) representation of the point cloud to normalize the information based on the recorded returns and the scanner’s characteristics. Secondly, most algorithms dealing with 3D point clouds are not designed to estimate forest structural attributes. Algorithms need to be developed for many attributes: trunk diameter from the ground up to the live crown, tree height, and tree crown dimensions and spatial density. TLiDAR is also particularly well adapted for method development to estimate the total leaf area of a stand, a value otherwise difficult to extract from either direct/destructive or indirect methods. Thirdly, a large number of structural metrics or (estimated) structural attributes can be made available for the stand. These metrics/attributes are useful to improve our ability to predict other stand attributes like the wood fiber attributes, stand growth potential, or habitat suitability. Forthly, TLiDAR taken at the plot level need to be used in support of mapping large area. We propose several focused studies on: (1) a new approach for method testing involving tree architectural models, (2) estimation of structural attributes (e.g. trunk diameter, crown dimensions, leaf area & stand openness) from the TLiDAR point cloud, (3) methods linking LiDAR metrics to predict wood fiber attributes, (4) species identification or assessment of tree/stand vigor, (5) linking terrestrial and airborne data, and (6) use of local (plot-level) data for spatial generalization.
陆地LiDAR(光探测和测距)或TLiDAR是一种通过由数百万个点组成的半球形扫描来探测其周围环境的仪器,每个点都有距离和反射率值。产生的3D云提供了一个明确的,但模糊的,周围对象的再现。即使TLiDAR技术是我们探测环境能力的重要一步,但该工具仍有需要克服的局限性。这些限制随着环境的复杂性而增加。 机载激光雷达被广泛使用,数据处理方法受益于世界各地的大量出版物和专业知识。相反,关于TLiDAR的研究和专业知识要少得多。大多数在森林环境中使用TLiDAR的研究都是从孤立的树木或受控环境(如种植园)中开发算法。有必要进行许多新的开发,以利用TLiDAR在天然森林环境中的能力,特别是支持增强的森林清查。因此,该研究计划旨在开发在天然森林环境中使用TLiDAR所需的方法,以估计大量的属性,这些属性要么目前在森林清查中不可用,要么目前可用但测量不佳。我们还旨在开发程序和算法,以克服TLiDAR在森林应用中的主要局限性。 我提出了一个研究计划,解决了四类与在天然林中使用TLiDAR相关的科学问题:(1)克服TLiDAR数据的局限性,(2)开发新的方法来测量树木/林分结构,(3)使用LiDAR指标在森林生态学中的有用关系,以及(4)将地块级数据的空间概括为大面积制图。首先,在林业中使用TLiDAR数据的主要限制是遮挡效应,这导致不透明物体后面的盲区。在森林等复杂环境中,遮挡的影响是显著的,并且具有高度的空间可变性;因此,它会严重影响结果。其他限制包括多扫描地理参考,风的影响,以及非常大的数据集的数据处理。处理TLiDAR限制的一种解决方案是使用点云的体素(3D立方体)表示来基于记录的回波和扫描仪的特性来归一化信息。其次,大多数处理3D点云的算法不是为了估计森林结构属性而设计的。算法需要开发的许多属性:树干直径从地面到活冠,树高,树冠尺寸和空间密度。激光雷达也特别适用于方法开发,以估计林分的总叶面积,否则很难从直接/破坏性或间接方法中提取的值。第三,大量的结构指标或(估计)结构属性可以为林分。这些指标/属性是有用的,以提高我们的能力来预测其他林分属性,如木材纤维属性,林分生长潜力,或栖息地的适合性。第四,在样地水平上拍摄的TLiDAR需要用于支持大面积制图。我们提出了几项重点研究:(1)一种新的方法测试涉及树结构模型,(2)结构属性的估计(例如树干直径,树冠尺寸,叶面积和林分开度),(3)将LiDAR指标与预测木材纤维属性联系起来的方法,(4)树种识别或树木/林分活力评估,(5)连接地面和航空数据,以及(6)使用本地(地块级)数据进行空间概括。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fournier, Richard其他文献

Calculation of the radiative properties of photosynthetic microorganisms
The practice of recent radiative transfer Monte Carlo advances and its contribution to the field of microorganisms cultivation in photobioreactors
Spectrally refined unbiased Monte Carlo estimate of the Earth's global radiative cooling.
  • DOI:
    10.1073/pnas.2315492121
  • 发表时间:
    2024-01-30
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Nyffenegger-Pere, Yaniss;Armante, Raymond;Bati, Megane;Blanco, Stephane;Dufresne, Jean-Louis;El Hafi, Mouna;Eymet, Vincent;Forest, Vincent;Fournier, Richard;Gautrais, Jacques;Lebrun, Raphael;Mellado, Nicolas;Mourtaday, Nada;Paulin, Mathias
  • 通讯作者:
    Paulin, Mathias
Short-path statistics and the diffusion approximation
  • DOI:
    10.1103/physrevlett.97.230604
  • 发表时间:
    2006-12-08
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Blanco, Stephane;Fournier, Richard
  • 通讯作者:
    Fournier, Richard

Fournier, Richard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fournier, Richard', 18)}}的其他基金

Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2020-05780
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2020-05780
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2020-05780
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2014-04508
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2014-04508
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2014-04508
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Mapping ecosystem services in support of sustainable forest management
绘制生态系统服务图以支持可持续森林管理
  • 批准号:
    521676-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Engage Grants Program
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2014-04508
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Outils géomatique interactifs pour améliorer le potentiel de cueillette du bleuet sauvage
为增强蓝色野性的潜力提供几何互动
  • 批准号:
    486594-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Engage Grants Program
Amélioration des méthodes de production cartographique à l'aide des données multisource de télédétection pour appuyer la gestion des forêts
改进制图制作方法和森林管理多源监测
  • 批准号:
    488745-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Engage Grants Program

相似国自然基金

损伤线粒体传递机制介导成纤维细胞/II型肺泡上皮细胞对话在支气管肺发育不良肺泡发育阻滞中的作用
  • 批准号:
    82371721
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
增强子在小鼠早期胚胎细胞命运决定中的功能和调控机制研究
  • 批准号:
    82371668
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
MAP2的m6A甲基化在七氟烷引起SST神经元树突发育异常及精细运动损伤中的作用机制研究
  • 批准号:
    82371276
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
"胚胎/生殖细胞发育特性激活”促进“神经胶质瘤恶变”的机制及其临床价值研究
  • 批准号:
    82372327
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
  • 批准号:
    32303019
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
TMEM30A介导的磷脂酰丝氨酸外翻促进毛细胞-SGN突触发育成熟的机制研究
  • 批准号:
    82371172
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
HER2特异性双抗原表位识别诊疗一体化探针研制与临床前诊疗效能研究
  • 批准号:
    82372014
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
细胞核分布基因NudCL2在细胞迁移及小鼠胚胎发育过程中的作用及机制研究
  • 批准号:
    31701214
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Research and development of behavioral and neurophysiological mechanisms of sensorimotor and emotional control methods using language
使用语言进行感觉运动和情绪控制方法的行为和神经生理学机制的研究和开发
  • 批准号:
    23H00624
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Uncovering Nodal signaling and transcription factor interactions in somitic mesoderm development using single-cell deep learning methods
使用单细胞深度学习方法揭示体细胞中胚层发育中的节点信号传导和转录因子相互作用
  • 批准号:
    10749611
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Development of stable coastal blue carbon distribution survey methods using satellites, observations, models, and AI
利用卫星、观测、模型和人工智能开发稳定的沿海蓝碳分布调查方法
  • 批准号:
    23H01516
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of multi-element catalysts using extrapolative machine learning methods
使用外推机器学习方法开发多元素催化剂
  • 批准号:
    22KF0006
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Statistical Methods for Biomarkers Identification Using High-resolution Diffusion MRI
使用高分辨率扩散 MRI 识别生物标志物的统计方法
  • 批准号:
    10667994
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
  • 批准号:
    10714834
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Novel bioinformatics methods to detect DNA and RNA modifications using Nanopore long-read sequencing
使用 Nanopore 长读长测序检测 DNA 和 RNA 修饰的新型生物信息学方法
  • 批准号:
    10792416
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Development of nursing delivery process and management methods using patient waiting time for services as an indicator.
以患者等待服务时间为指标,制定护理服务流程和管理方法。
  • 批准号:
    23K09896
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clarification of health check-up behavior using a large-scale spouse pairs and development of intervention methods
大规模配偶健康检查行为的澄清及干预方法的制定
  • 批准号:
    23K09734
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Sign Language Recognition Engine Using Self-Supervised Learning Methods
使用自我监督学习方法开发手语识别引擎
  • 批准号:
    23K17511
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了