Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels

使用地面激光雷达评估树木和林分水平森林结构的方法开发

基本信息

  • 批准号:
    RGPIN-2014-04508
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Terrestrial LiDAR (Light Detection and Ranging) or TLiDAR is an instrument probing its surroundings with a hemispherical scan composed of several million points, each of which has a distance and a reflectance value. The resulting 3D cloud provides an explicit, although fuzzy, rendition of the surrounding objects. Even if TLiDAR technology is an important step forward in our ability to probe our environments, this tool has limitations that need to be overcome. These limitations grow with the complexity of the environment. Airborne LiDAR is widely used and the methods for data processing benefit from a large pool of publications and expertise worldwide. Conversely, studies and expertise on TLiDAR are much less predominant. Most studies using TLiDAR in forest environments developed algorithms from isolated trees or within a controlled environment like a plantation. There is a need for many new developments to take advantage of the capabilities of the TLiDAR in natural forest environments, particularly to support enhanced forest inventory. Thus this research program aims to develop the methods required to use TLiDAR in natural forest environments to estimate a large array of attributes, which either are not currently available in the forest inventory or are currently available but poorly measured. We also aim to develop procedures and algorithms to overcome the main limitations of TLiDAR in forest applications. I propose a research program that tackles the four categories of scientific questions related to the use of TLiDAR in natural forests: (1) overcoming the limitations of TLiDAR data, (2) developing new methods to measure tree/stand structure, (3) using LiDAR metrics for useful relationships in forest ecology, and (4) the spatial generalization of plot-level data to large area mapping. Firstly, the main limitation for the use of TLiDAR data in forestry is the occlusion effect, which results in blind zones behind opaque objects. The effect of occlusion in a complex environment like a forest is significant and highly spatially variable; consequently, it can seriously bias the results. Other limitations include multiscans georeference, the effect of wind, and data processing of very large datasets. One solution to handle TLiDAR limitations is the use of a voxel (3D cube) representation of the point cloud to normalize the information based on the recorded returns and the scanner’s characteristics. Secondly, most algorithms dealing with 3D point clouds are not designed to estimate forest structural attributes. Algorithms need to be developed for many attributes: trunk diameter from the ground up to the live crown, tree height, and tree crown dimensions and spatial density. TLiDAR is also particularly well adapted for method development to estimate the total leaf area of a stand, a value otherwise difficult to extract from either direct/destructive or indirect methods. Thirdly, a large number of structural metrics or (estimated) structural attributes can be made available for the stand. These metrics/attributes are useful to improve our ability to predict other stand attributes like the wood fiber attributes, stand growth potential, or habitat suitability. Forthly, TLiDAR taken at the plot level need to be used in support of mapping large area. We propose several focused studies on: (1) a new approach for method testing involving tree architectural models, (2) estimation of structural attributes (e.g. trunk diameter, crown dimensions, leaf area & stand openness) from the TLiDAR point cloud, (3) methods linking LiDAR metrics to predict wood fiber attributes, (4) species identification or assessment of tree/stand vigor, (5) linking terrestrial and airborne data, and (6) use of local (plot-level) data for spatial generalization.
陆生雨(光检测和范围)或小三下是一种仪器,其周围环境的半球扫描由数百万点组成,每个点都有距离和反射率值。最终的3D云提供了周围对象的显式(尽管模糊,但模糊不清)。即使Tlidar技术是我们探究环境的能力迈出的重要一步,该工具的局限性需要克服。这些局限性随环境的复杂性而增长。机载激元被广泛使用,数据处理的方法受益于全球大量出版物和专业知识。相反,关于小铁的研究和专业知识的主要优势。大多数在森林环境中使用Tlidar使用的研究从孤立的树木或种植园等受控环境中开发了算法。有许多新的发展需要利用天然森林环境中的小铁的能力,尤其是为了支持增强的森林库存。该研究计划旨在开发在天然森林环境中使用小铁的方法来估计大量属性所需的方法,这些属性目前尚未在森林库存中可用,或者目前可用但效果不佳。我们还旨在开发程序和算法,以克服森林应用中小铁的主要局限性。我提出了一项研究计划,该计划解决了与在天然林中使用tlidar有关的四个类别的科学问题:(1)克服tlidar数据的局限性,(2)开发新方法来测量树/架子的结构,(3)使用LIDAR指标用于森林生态中的有用关系,以及(4)(4)(4)(4)绘图绘图的空间属性数据绘制了大区域的空间态度。首先,在林业中使用小铁数据的主要局限性是遮挡效应,这导致不透明物体后面的盲区。像森林这样的复杂环境中闭塞的作用是显着的,并且在空间上是高度可变的。因此,它可以严重偏向结果。其他局限性包括Multiscans的地球群,风的效果以及非常大的数据集的数据处理。处理小标志限制的一种解决方案是使用点云的体素(3D立方体)表示,以根据记录的回报和扫描仪的特征来归一化信息。其次,大多数处理3D点云的算法并非旨在估计森林结构属性。需要针对许多属性开发算法:从地面到活的冠,树高和树冠尺寸和空间密度的躯干直径。特利达(Tlidar)也特别适应方法开发,以估计林分的总叶面积,否则很难从直接/破坏性或间接方法中提取这一值。第三,可以提供大量的结构指标或(估计的)结构属性。这些指标/属性可用于提高我们预测其他林分属性(如木纤维属性,生长潜力或栖息地的适用性)的能力。再过,需要将小铁路带到地块水平上,以支持绘制大面积。我们提出了一些重点研究:(1)一种涉及树木建筑模型的方法测试的新方法,(2)估计结构属性(例如,直径,躯干直径,冠状尺寸,叶子面积和敞开的开放度),(3)方法,(3)链接到lidar属性的方法,并预测木纤维属性,(4)物种识别(4)物种的链接(4)物种的链接(4),(4)物种的链接(4),(4)物种的链接(4),(4)物种的链接(4)。空气传播的数据和(6)使用局部(情节级)数据进行空间泛化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fournier, Richard其他文献

Calculation of the radiative properties of photosynthetic microorganisms
Parameter values and functional dependences for the six models of object clustering behavior.
  • DOI:
    10.1371/journal.pone.0038588.t001
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fournier, Richard;Weitz, Sebastian;Theraulaz, Guy
  • 通讯作者:
    Theraulaz, Guy
Radiative, conductive and convective heat-transfers in a single Monte Carlo algorithm
  • DOI:
    10.1088/1742-6596/676/1/012007
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fournier, Richard;Blanco, Stephane;Spiesser, Christophe
  • 通讯作者:
    Spiesser, Christophe
The practice of recent radiative transfer Monte Carlo advances and its contribution to the field of microorganisms cultivation in photobioreactors
Short-path statistics and the diffusion approximation
  • DOI:
    10.1103/physrevlett.97.230604
  • 发表时间:
    2006-12-08
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Blanco, Stephane;Fournier, Richard
  • 通讯作者:
    Fournier, Richard

Fournier, Richard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fournier, Richard', 18)}}的其他基金

Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2020-05780
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2020-05780
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2020-05780
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2014-04508
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2014-04508
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Mapping ecosystem services in support of sustainable forest management
绘制生态系统服务图以支持可持续森林管理
  • 批准号:
    521676-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Engage Grants Program
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2014-04508
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2014-04508
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Outils géomatique interactifs pour améliorer le potentiel de cueillette du bleuet sauvage
为增强蓝色野性的潜力提供几何互动
  • 批准号:
    486594-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Engage Grants Program
Amélioration des méthodes de production cartographique à l'aide des données multisource de télédétection pour appuyer la gestion des forêts
改进制图制作方法和森林管理多源监测
  • 批准号:
    488745-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Engage Grants Program

相似国自然基金

剪接因子SNRPA1通过调节R-loop稳态影响肺腺癌发展进程的机制研究
  • 批准号:
    32360143
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
  • 批准号:
    32371366
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
企业层面视角下自由贸易协定条款深度对出口高质量发展的影响:模型拓展与量化分析
  • 批准号:
    72363013
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
新型城镇化与区域协调发展的机制与治理体系研究
  • 批准号:
    72334006
  • 批准年份:
    2023
  • 资助金额:
    167 万元
  • 项目类别:
    重点项目
亦正亦邪Sirt6:Sirt6调控谷氨酰胺代谢促进肝内胆管癌发生发展的分子机制研究
  • 批准号:
    82372667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
  • 批准号:
    10748859
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
Research and development of behavioral and neurophysiological mechanisms of sensorimotor and emotional control methods using language
使用语言进行感觉运动和情绪控制方法的行为和神经生理学机制的研究和开发
  • 批准号:
    23H00624
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Functional characterization of schizophrenia rare variants using genetically engineered human iPSCs
使用基因工程人类 iPSC 进行精神分裂症罕见变异的功能表征
  • 批准号:
    10554598
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
  • 批准号:
    10696649
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Reducing Opioid and Other Drug Use in Justice-Involved Emerging Adults using Paraprofessional Coaches (with and without Lived Experience) to Deliver Effective Services in a Non-Treatment Setting
使用辅助专业教练(有或没有生活经验)减少涉及司法的新兴成年人的阿片类药物和其他药物使用,以在非治疗环境中提供有效的服务
  • 批准号:
    10846139
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了