Calabi-Yau Varieties: Arithmetic, Geometry and Physics

Calabi-Yau 品种:算术、几何和物理

基本信息

  • 批准号:
    RGPIN-2014-04711
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The proposed program is concerned with problems at the crossroads of number theory (arithmetic algebraic geometry) and theoretical physics (string theory). The outcomes will enhance our understanding in the chosen fields of mathematics and physics, and ultimately of our universe. String theory is a physics prediction that what the universe is made of, is, at the most elementary level, strings (one-dimensional objects), rather than point particles (zero-dimensional objects). String theory demands ten dimensional space-time (as opposed to the dimension four of our real world). This is, roughly speaking, because more dimensions can accommodate more possible string vibrations. The extra six dimensional objects in string theory are known as Calabi-Yau manifolds (threefolds), and they are the main concern in my investigation. The objective of the proposed research is to understand the physical prediction of mirror symmetry for Calabi-Yau manifolds from a mathematical point of view. A Calabi-Yau manifold is a compact complex Kaehler manifold with vanishing first Chern class and zero first Betti number. Calabi-Yau manifolds of dimension one, two, and three are, respectively, elliptic curves, K3 surfaces, and Calabi-Yau threefolds. Mirror symmetry is a prediction in string theory that certain “mirror pairs” of Calabi-Yau threefolds yield identical physical theories. Modular (and quasimodular) forms, Hilbert, Siegel and Jacobi modular forms, and automorphic forms appear, as generating functions of geometric invariants, or as partition functions, or as mirror maps in the mirror symmetry landscape. One of my goals is to interpret mirror symmetry in terms of arithmetic invariants such as zeta-functions and L-series of the Calabi-Yau manifolds in question. In this regard, the automorphy question for the L-series will be vigorously pursued. Here, “automorphy” refers to the presumed fact that the (motivic) L-series arising from Calabi-Yau manifolds are automorphic L-series in the context of the Langlands program. The most compelling endeavour in this project is to consider the above problem for families of Calabi-Yau manifolds with deformation parameters. Such families arise when we consider mirror Calabi-Yau manifolds. We ought to introduce automorphic (modular) forms with parameters. Another central goal of my project is the conceptual understanding of the modular properties of the partition functions, and of the generating functions of the Gromov-Witten invariants, the Donaldson-Thomas invariants and other geometric invariants, such as instanton number, for Calabi-Yau manifolds. This will involve studying, among other things, Feynman path integrals on trivalent graphs, the inductive nature of such graphs, and their interpretation in terms of Kodaira-Spencer theory and Bershadsky-Cecotti-Ooguri-Vafa (BCOV) theory. It is imperative to lay solid mathematical foundations for string theory, for the benefit of both mathematicians and string theorists.
该计划涉及数论(算术代数几何)和理论物理(弦理论)的十字路口问题。这些成果将增强我们对数学和物理学领域的理解,并最终增强我们对宇宙的理解。 弦论是一种物理学预测,宇宙是由什么组成的,在最基本的水平上,是弦(一维物体),而不是点粒子(零维物体)。弦理论要求10维时空(与我们真实的世界的4维相对)。粗略地说,这是因为更多的维度可以容纳更多可能的弦振动。弦论中额外的六维物体被称为卡-丘流形(三重),它们是我研究的主要对象。 这项研究的目的是从数学的角度来理解卡-丘流形镜像对称的物理预测。一个Calabi-Yau流形是一个紧致复Kaehler流形,它的第一个Chern类为零,第一个Betti数为零。一维、二维和三维的卡-丘流形分别是椭圆曲线、K3曲面和卡-丘三重。镜像对称是弦论中的一个预言,即卡-丘三重的某些“镜像对”产生相同的物理理论。模(和拟模)形式,希尔伯特,西格尔和雅可比模形式,自守形式出现,作为几何不变量的生成函数,或作为配分函数,或作为镜像对称景观中的镜像映射。 我的目标之一是解释镜像对称的算术不变量,如ζ函数和L系列的卡-丘流形的问题。在这方面,将大力探讨L系列的自同构问题。这里,“自同构”是指假设的事实,即由卡-丘流形产生的(动机)L-级数在朗兰兹纲领的上下文中是自同构的L-级数。在这个项目中最引人注目的努力是考虑上述问题的家庭的卡-丘流形变形参数。这样的家庭出现时,我们考虑镜像卡-丘流形。我们应该引入带参数的自守(模)形式。 我的项目的另一个中心目标是概念上的理解的模块化属性的分区功能,并生成功能的Gromov-Witten不变量,唐纳森-托马斯不变量和其他几何不变量,如瞬子数,卡拉比-丘流形。这将涉及研究,除其他事项外,费曼路径积分的三价图,归纳性质的这种图形,以及他们的解释在Kodaira-Spencer理论和Bershadsky-Cecotti-Ooguri-Vafa(BCOV)理论。为了数学家和弦理论家的利益,必须为弦理论奠定坚实的数学基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yui, Noriko其他文献

Yui, Noriko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yui, Noriko', 18)}}的其他基金

Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
  • 批准号:
    RGPIN-2019-04000
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
  • 批准号:
    RGPIN-2014-04711
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
  • 批准号:
    RGPIN-2014-04711
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
  • 批准号:
    RGPIN-2014-04711
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic of Calabi-Yau varieties and mirror symmetry
Calabi-Yau簇的算术和镜像对称性
  • 批准号:
    36283-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic of Calabi-Yau varieties and mirror symmetry
Calabi-Yau簇的算术和镜像对称性
  • 批准号:
    36283-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic of Calabi-Yau varieties and mirror symmetry
Calabi-Yau簇的算术和镜像对称性
  • 批准号:
    36283-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic of Calabi-Yau varieties and mirror symmetry
Calabi-Yau簇的算术和镜像对称性
  • 批准号:
    36283-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic of Calabi-Yau varieties and mirror symmetry
Calabi-Yau簇的算术和镜像对称性
  • 批准号:
    36283-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
The arithmetic of calabi-yau varieties and mirror symmetry
calabi-yau簇的算术和镜像对称性
  • 批准号:
    36283-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

分次斜 Calabi-Yau 代数的研究
  • 批准号:
    Y24A010046
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于退化Calabi-Yau流形的研究
  • 批准号:
    12301059
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
关于黎曼流形上精确 Li-Yau 型梯度估计的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Calabi-Yau代数的同调和表示与Poisson代数的同调
  • 批准号:
    11901396
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
模型结构、三角范畴与Calabi-Yau代数
  • 批准号:
    11871125
  • 批准年份:
    2018
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
Poincaré-Mok-Yau 型典则 Kähler 度量的存在性
  • 批准号:
    11701426
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
镜对称及双有理代数几何背景下的高维 Calabi-Yau 簇
  • 批准号:
    11601015
  • 批准年份:
    2016
  • 资助金额:
    15.0 万元
  • 项目类别:
    青年科学基金项目
箭图代数与Calabi-Yau范畴
  • 批准号:
    11671230
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
Calabi-Yau范畴上的非交换几何结构
  • 批准号:
    11671281
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
单位球面中极小超曲面的第一特征值的Yau的猜想
  • 批准号:
    11501500
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Degenerations of Fano and Calabi-Yau varieties and its applications
Fano和Calabi-Yau品种的退化及其应用
  • 批准号:
    23K03032
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of algebraic varieties related to Calabi-Yau varieties in positive characteristic
与Calabi-Yau簇相关的正特征代数簇研究
  • 批准号:
    23K03066
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics on Calabi--Yau and abelian varieties
卡拉比动态--丘和阿贝尔变种
  • 批准号:
    EP/W026554/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
Theta Functions and Log Calabi Yau Varieties
Theta 函数和 Log Calabi Yau 品种
  • 批准号:
    2055089
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
K3 surfaces and Calabi-Yau varieties from a inseparable viewpoint
从密不可分的角度来看 K3 表面和 Calabi-Yau 品种
  • 批准号:
    20K14296
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on the formal groups of low-dimensional Calabi-Yau varieties
低维Calabi-Yau变体形式群的研究
  • 批准号:
    18K03200
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
  • 批准号:
    RGPIN-2014-04711
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Calabi-Yau Pairs and Mirror Symmetry for Fano Varieties
Fano 品种的 Calabi-Yau 对和镜像对称性
  • 批准号:
    EP/P029949/1
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
  • 批准号:
    RGPIN-2014-04711
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Deformation and classification of Fano varieties and Calabi-Yau varieties
Fano变种和Calabi-Yau变种的变形和分类
  • 批准号:
    16K17573
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了