Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
基本信息
- 批准号:RGPIN-2014-04711
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed program is concerned with problems at the crossroads of number theory (arithmetic algebraic geometry) and theoretical physics (string theory). The outcomes will enhance our understanding in the chosen fields of mathematics and physics, and ultimately of our universe.String theory is a physics prediction that what the universe is made of, is, at the most elementary level, strings (one-dimensional objects), rather than point particles (zero-dimensional objects). String theory demands ten dimensional space-time (as opposed to the dimension four of our real world). This is, roughly speaking, because more dimensions can accommodate more possible string vibrations. The extra six dimensional objects in string theory are known as Calabi-Yau manifolds (threefolds), and they are the main concern in my investigation.The objective of the proposed research is to understand the physical prediction of mirror symmetry for Calabi-Yau manifolds from a mathematical point of view. A Calabi-Yau manifold is a compact complex Kaehler manifold with vanishing first Chern class and zero first Betti number. Calabi-Yau manifolds of dimension one, two, and three are, respectively, elliptic curves, K3 surfaces, and Calabi-Yau threefolds. Mirror symmetry is a prediction in string theory that certain “mirror pairs” of Calabi-Yau threefolds yield identical physical theories. Modular (and quasimodular) forms, Hilbert, Siegel and Jacobi modular forms, and automorphic forms appear, as generating functions of geometric invariants, or as partition functions, or as mirror maps in the mirror symmetry landscape.One of my goals is to interpret mirror symmetry in terms of arithmetic invariants such as zeta-functions and L-series of the Calabi-Yau manifolds in question. In this regard, the automorphy question for the L-series will be vigorously pursued. Here, “automorphy” refers to the presumed fact that the (motivic) L-series arising from Calabi-Yau manifolds are automorphic L-series in the context of the Langlands program. The most compelling endeavour in this project is to consider the above problem for families of Calabi-Yau manifolds with deformation parameters. Such families arise when we consider mirror Calabi-Yau manifolds. We ought to introduce automorphic (modular) forms with parameters.Another central goal of my project is the conceptual understanding of the modular properties of the partition functions, and of the generating functions of the Gromov-Witten invariants, the Donaldson-Thomas invariants and other geometric invariants, such as instanton number, for Calabi-Yau manifolds. This will involve studying, among other things, Feynman path integrals on trivalent graphs, the inductive nature of such graphs, and their interpretation in terms of Kodaira-Spencer theory and Bershadsky-Cecotti-Ooguri-Vafa (BCOV) theory. It is imperative to lay solid mathematical foundations for string theory, for the benefit of both mathematicians and string theorists.
拟议的计划涉及数论(算术代数几何)和理论物理(弦理论)的十字路口的问题。结果将增进我们在选定的数学和物理领域以及最终对我们宇宙的理解。弦理论是一种物理预测,即宇宙在最基本的层面上是由弦(一维物体)组成的,而不是点粒子(零维物体)。弦理论需要十维时空(而不是我们现实世界的四维时空)。粗略地说,这是因为更多的维度可以容纳更多可能的弦振动。弦理论中额外的六维物体被称为Calabi-Yau流形(三重),这是我研究的主要内容,其目的是从数学角度理解Calabi-Yau流形镜像对称性的物理预测。Calabi-Yau流形是一种紧致复Kaehler流形,它的第一类为零,第一类为零。一维、二维和三维的Calabi-Yau流形分别是椭圆曲线、K3曲面和Calabi-Yau三重流形。镜像对称性是弦理论中的一种预言,即某些Calabi-Yau三重“镜像对”产生相同的物理理论。模(和准模)形式、Hilbert模形式、Siegel模形式、Jacobi模形式和自同构形式作为几何不变量的生成函数,或者作为配分函数,或者作为镜像对称景观中的镜像映射出现。我的目标之一是用所讨论的Calabi-Yau流形的算术不变量来解释镜像对称。在这方面,L系列的自同构问题将被大力追问。这里,“自同构”指的是假定由Calabi-Yau流形产生的(动机)L级数在朗兰兹程序的背景下是自同构的L-级数。在这个项目中,最引人注目的工作是考虑具有形变参数的Calabi-Yau流形族的上述问题。当我们考虑镜像Calabi-Yau流形时,这样的族就出现了。我们应该引入带参数的自同构(模)形式。我的项目的另一个中心目标是概念性地理解配分函数的模属性,以及Gromov-Witten不变量、Donaldson-Thomas不变量和其他几何不变量的母函数,例如Calabi-Yau流形的瞬子数。这将涉及研究三叶图上的Feynman路积分,这类图的归纳性质,以及它们在Kodaira-Spencer理论和Bershadsky-Cecotti-Ooguri-Vafa(BCOV)理论方面的解释。为了数学家和弦理论家的利益,必须为弦理论奠定坚实的数学基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yui, Noriko其他文献
Yui, Noriko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yui, Noriko', 18)}}的其他基金
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
- 批准号:
RGPIN-2014-04711 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
- 批准号:
RGPIN-2014-04711 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
- 批准号:
RGPIN-2014-04711 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic of Calabi-Yau varieties and mirror symmetry
Calabi-Yau簇的算术和镜像对称性
- 批准号:
36283-2009 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic of Calabi-Yau varieties and mirror symmetry
Calabi-Yau簇的算术和镜像对称性
- 批准号:
36283-2009 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic of Calabi-Yau varieties and mirror symmetry
Calabi-Yau簇的算术和镜像对称性
- 批准号:
36283-2009 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic of Calabi-Yau varieties and mirror symmetry
Calabi-Yau簇的算术和镜像对称性
- 批准号:
36283-2009 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic of Calabi-Yau varieties and mirror symmetry
Calabi-Yau簇的算术和镜像对称性
- 批准号:
36283-2009 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
The arithmetic of calabi-yau varieties and mirror symmetry
calabi-yau簇的算术和镜像对称性
- 批准号:
36283-2004 - 财政年份:2008
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
分次斜 Calabi-Yau 代数的研究
- 批准号:Y24A010046
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于退化Calabi-Yau流形的研究
- 批准号:12301059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关于黎曼流形上精确 Li-Yau 型梯度估计的研究
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
Calabi-Yau代数的同调和表示与Poisson代数的同调
- 批准号:11901396
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
模型结构、三角范畴与Calabi-Yau代数
- 批准号:11871125
- 批准年份:2018
- 资助金额:52.0 万元
- 项目类别:面上项目
Poincaré-Mok-Yau 型典则 Kähler 度量的存在性
- 批准号:11701426
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
镜对称及双有理代数几何背景下的高维 Calabi-Yau 簇
- 批准号:11601015
- 批准年份:2016
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
箭图代数与Calabi-Yau范畴
- 批准号:11671230
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
Calabi-Yau范畴上的非交换几何结构
- 批准号:11671281
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
单位球面中极小超曲面的第一特征值的Yau的猜想
- 批准号:11501500
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Degenerations of Fano and Calabi-Yau varieties and its applications
Fano和Calabi-Yau品种的退化及其应用
- 批准号:
23K03032 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of algebraic varieties related to Calabi-Yau varieties in positive characteristic
与Calabi-Yau簇相关的正特征代数簇研究
- 批准号:
23K03066 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamics on Calabi--Yau and abelian varieties
卡拉比动态--丘和阿贝尔变种
- 批准号:
EP/W026554/1 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Research Grant
Theta Functions and Log Calabi Yau Varieties
Theta 函数和 Log Calabi Yau 品种
- 批准号:
2055089 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
K3 surfaces and Calabi-Yau varieties from a inseparable viewpoint
从密不可分的角度来看 K3 表面和 Calabi-Yau 品种
- 批准号:
20K14296 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study on the formal groups of low-dimensional Calabi-Yau varieties
低维Calabi-Yau变体形式群的研究
- 批准号:
18K03200 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
- 批准号:
RGPIN-2014-04711 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau Pairs and Mirror Symmetry for Fano Varieties
Fano 品种的 Calabi-Yau 对和镜像对称性
- 批准号:
EP/P029949/1 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Research Grant
Deformation and classification of Fano varieties and Calabi-Yau varieties
Fano变种和Calabi-Yau变种的变形和分类
- 批准号:
16K17573 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
- 批准号:
RGPIN-2014-04711 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual