Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
基本信息
- 批准号:RGPIN-2014-04929
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research leverages advances in Pattern Recognition, Image
Processing, Computational Geometry and Machine Learning to develop novel
solutions to address problems in the area of Medical Imaging. Specifically, I
am furthering my research on Computer Aided Medical Diagnosis for cytological
imagery of breast cancer fine needle biopsies, and of thin blood smears for
malaria detection. For these types of cytological images, my long term
objective is to develop robust, accessible, rapid, and accurate Medical
Diagnosis tools to provide an automatic independent second opinion, to help
avoid errors/oversights, to Pathologists, Clinicians and Medical Specialists,
or act as an expert system to aid the non-specialist medical practitioner.
The process of computer-assisted medical diagnosis or malignancy grading can
be described in two main stages: feature extraction from medical imagery and
classification of the imagery with respect to specific medical issues. One
objective of the proposed work is the determination of improved feature sets
for specific types of cytological images. Many of the frequently used
features used for medical image classification problems require accurate
image segmentation prior to determining these features. Therefore, I am
studying approaches to improve the accuracy and speed of the segmentation of
cells in cytological images by extending my previous work ranging from the
use of the Hough transform to using active contours models, to incorporate
effective use of texture, per-pixel classifiers, and shape modeling. We are
also extending this research to the accurate segmentation of new medical
imaging technologies such as very large full slide virtual images, 3D images,
and images created with extended focal imaging (EFI).
Another objective of the proposed research is to improve the accuracy of the
malignancy classification in cytological images of breast cancer fine needle
biopsies. Specifically, we study the problems of malignancy diagnosis to
determine whether the slide is malignant or benign, and of malignancy grading
where we use the Bloom-Richardson malignancy grading. To accomplish this,
with optimized feature sets, we will develop systems of classifiers that
improve sensitivity rates, particularly with minimal rates of false
negatives. Since the classifiers have to work in a clinical setting, we will
adapt the classifiers to do automatic parameter tuning. The third objective
of the proposed research is to improve the detection of malaria parasites in
cytological images of blood smear slides. Building on our previous complete
blood count framework, we will develop a computer-assisted malaria detection
system to determine the presence of malaria and return accurate infection
counts per RBC counts in thick blood smears; and to differentiate between the
four species of the malarial parasite in thin blood smears. We will develop
systems of classifiers with improved sensitivity rates.
My work in Health Informatics contributes to the larger trend in medical
imagery to develop computer assisted medical diagnosis tools to complement
and facilitate the work of Clinicians and Pathologists. All developments are
designed to use commonly available microscopy and computing resources. For
example, in the rural areas of malaria stricken countries there are
frequently no specialists to do microscopic screening of blood slides for
malaria. Through the automatic analysis of these slides, the computer
assisted expert systems proposed in my research would help fill the knowledge
gap between a specialist with the necessary expertise and the practitioner
actually examining cytological slides, thus leading to better patient care.
拟议的研究利用了模式识别、图像处理和图像处理方面的进展。
处理,计算几何和机器学习开发新的
解决医学成像领域的问题。我特别
我正在进一步研究计算机辅助医学诊断细胞学
乳腺癌细针穿刺活检和薄血涂片的成像,
疟疾检测对于这些类型的细胞学图像,
目标是开发强大的,可访问的,快速的,准确的医疗
诊断工具提供自动独立的第二意见,以帮助
避免错误/疏忽,病理学家,临床医生和医学专家,
或者作为专家系统来帮助非专业的执业医师。
计算机辅助医学诊断或恶性肿瘤分级的过程可以
可以分为两个主要阶段:从医学图像中提取特征,
根据具体医疗问题对图像进行分类。一
所提出的工作的目标是确定改进的特征集
用于特定类型的细胞学图像。许多经常使用的
用于医学图像分类问题的特征需要精确的
在确定这些特征之前进行图像分割。所以我
研究提高分割精度和速度的方法,
通过扩展我以前的工作,
使用Hough变换到使用活动轮廓模型,
有效地使用纹理、每像素分类器和形状建模。我们
并将该研究扩展到新医疗器械的准确分割,
成像技术,如非常大的全载玻片虚拟图像,3D图像,
以及使用扩展聚焦成像(Extended Focal Imaging,EFL)创建的图像。
所提出的研究的另一个目标是提高
乳腺癌细针细胞学图像的恶性分类
活组织检查具体而言,我们研究恶性肿瘤诊断的问题,
确定载玻片是恶性还是良性,以及恶性分级
我们使用布卢姆-理查森恶性肿瘤分级为了实现这一点,
通过优化的特征集,我们将开发分类器系统,
提高灵敏度,特别是最低的错误率
底片。由于分类器必须在临床环境中工作,我们将
调整分类器以进行自动参数调整。第三个目标
这项研究的目的是提高对疟疾寄生虫的检测,
血液涂片载玻片的细胞学图像。基于我们之前完成的
血细胞计数框架,我们将开发一个计算机辅助疟疾检测系统,
确定疟疾存在并返回准确感染情况的系统
厚血涂片中每RBC计数的计数;并区分
在薄的血涂片中发现了四种疟原虫。我们将开发
具有改进的灵敏度的分类器系统。
我在健康信息学方面的工作有助于医疗领域的更大趋势
图像,以开发计算机辅助医疗诊断工具,
并促进临床医生和病理学家的工作。所有的发展都是
设计成使用通常可用的显微镜和计算资源。为
例如,在疟疾肆虐的国家的农村地区,
经常没有专家做血液载玻片的显微镜筛查,
疟疾通过对这些幻灯片的自动分析,
在我的研究中提出的辅助专家系统将有助于填补知识
具有必要专业知识的专家与从业者之间的差距
实际上是检查细胞学切片,从而更好地照顾病人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fevens, Thomas其他文献
Computer-Aided Breast Cancer Diagnosis Based on the Analysis of Cytological Images of Fine Needle Biopsies
- DOI:
10.1109/tmi.2013.2275151 - 发表时间:
2013-12-01 - 期刊:
- 影响因子:10.6
- 作者:
Filipczuk, Pawel;Fevens, Thomas;Monczak, Roman - 通讯作者:
Monczak, Roman
Automatic clinical image segmentation using pathological modeling, PCA and SVM
- DOI:
10.1016/j.engappai.2006.01.011 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:8
- 作者:
Li, Shuo;Fevens, Thomas;Li, Song - 通讯作者:
Li, Song
Semi-automatic computer aided lesion detection in dental X-rays using variational level set
- DOI:
10.1016/j.patcog.2007.01.012 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:8
- 作者:
Li, Shuo;Fevens, Thomas;Li, Song - 通讯作者:
Li, Song
Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies
- DOI:
10.2478/v10006-008-0007-x - 发表时间:
2008-01-01 - 期刊:
- 影响因子:1.9
- 作者:
Jelen, Lukasz;Fevens, Thomas;Krzyzak, Adam - 通讯作者:
Krzyzak, Adam
Optimized keyframe extraction for 3D character?animations
- DOI:
10.1002/cav.1471 - 发表时间:
2012-11-01 - 期刊:
- 影响因子:1.1
- 作者:
Jin, Chao;Fevens, Thomas;Mudur, Sudhir - 通讯作者:
Mudur, Sudhir
Fevens, Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fevens, Thomas', 18)}}的其他基金
Towards Effective and Interpretable Deep Learning Applications for Microscopic Medical Imaging
面向显微医学成像的有效且可解释的深度学习应用
- 批准号:
RGPIN-2020-06785 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Towards Effective and Interpretable Deep Learning Applications for Microscopic Medical Imaging
面向显微医学成像的有效且可解释的深度学习应用
- 批准号:
RGPIN-2020-06785 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Towards Effective and Interpretable Deep Learning Applications for Microscopic Medical Imaging
面向显微医学成像的有效且可解释的深度学习应用
- 批准号:
RGPIN-2020-06785 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
- 批准号:
RGPIN-2014-04929 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Distributed Deep Learning using Blockchain Mining Servers for Medical Imaging
使用区块链挖掘服务器进行医疗成像的分布式深度学习
- 批准号:
529457-2018 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
- 批准号:
RGPIN-2014-04929 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
- 批准号:
RGPIN-2014-04929 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
- 批准号:
RGPIN-2014-04929 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry and applications
计算几何及其应用
- 批准号:
249849-2011 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry and applications
计算几何及其应用
- 批准号:
249849-2006 - 财政年份:2010
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 1.46万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 1.46万 - 项目类别:
Studentship
Plasmonic Mg-based catalysts for low temperature sunlight-assisted CO2 activation (MgCatCO2Act)
用于低温阳光辅助 CO2 活化的等离子体镁基催化剂 (MgCatCO2Act)
- 批准号:
EP/Y037294/1 - 财政年份:2025
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
The Ethics of Voluntary Assisted Dying: Promoting Constructive Debate
自愿辅助死亡的伦理:促进建设性辩论
- 批准号:
DP240102614 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Projects
Mid-Infrared Vibrational-Assisted Detectors (MIRVID)
中红外振动辅助探测器 (MIRVID)
- 批准号:
EP/Y036379/1 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
PAPIER - Plasma Assisted Printing of Metal Inks with Enhanced Resistivity
PAPIER - 具有增强电阻率的金属油墨的等离子辅助印刷
- 批准号:
EP/Y001877/1 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
Smart Wearable Devices with Force Control for Impedance Training in Robot Assisted Rehabilitation
具有力控制功能的智能可穿戴设备用于机器人辅助康复中的阻抗训练
- 批准号:
24K03321 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)